What affects Performance?

  • Hardware
    • CPU: number of cores, frequency, cache sizes
    • Memory: bandwidth
    • Network: latency
  • Model
    • Type (LP, QP, MILP, MINLP)
    • Size
    • Structure / Properties
  • Solver
    • Parameters

How do you choose?

Solver Workflow for MILPs

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000

Optimize a model with 3837 rows, 6966 columns and 17609 nonzeros
Model fingerprint: 0x86fb5f10
Model has 192 simple general constraints
  192 INDICATOR
Variable types: 3157 continuous, 3809 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 6e+04]
  RHS range        [1e+00, 1e+02]
  GenCon coe range [1e+00, 1e+00]
Presolve removed 3456 rows and 4225 columns
Presolve time: 0.08s
Presolved: 381 rows, 2741 columns, 8402 nonzeros
Variable types: 0 continuous, 2741 integer (2693 binary)

Root relaxation: objective 8.250000e+00, 316 iterations, 0.01 seconds (0.01 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    8.25000    0   32          -    8.25000      -     -    0s
     0     0    8.25000    0   75          -    8.25000      -     -    0s
     0     0    8.25000    0   86          -    8.25000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  924.00000    0   94          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  104          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  952.06122    0  117          -  952.06122      -     -    0s
     0     0  952.06122    0  117          -  952.06122      -     -    0s
     0     0  952.06122    0  122          -  952.06122      -     -    0s
     0     0  952.06122    0  105          -  952.06122      -     -    0s
     0     0 1324.07692    0  101          - 1324.07692      -     -    0s
     0     0 1324.07692    0  109          - 1324.07692      -     -    0s
     0     0 1324.07692    0   97          - 1324.07692      -     -    0s
     0     0 1324.07692    0   93          - 1324.07692      -     -    0s
     0     0 1371.85296    0  116          - 1371.85296      -     -    0s
     0     0 1413.82692    0  105          - 1413.82692      -     -    0s
     0     0 1416.95192    0  105          - 1416.95192      -     -    0s
     0     0 1416.95192    0  112          - 1416.95192      -     -    0s
H    0     0                    26492.000000 2589.44049  90.2%     -    0s
     0     0 2589.44049    0  129 26492.0000 2589.44049  90.2%     -    0s
     0     0 2589.44049    0  141 26492.0000 2589.44049  90.2%     -    0s
     0     0 2589.44049    0  140 26492.0000 2589.44049  90.2%     -    0s
     0     0 2835.97147    0  142 26492.0000 2835.97147  89.3%     -    0s
     0     0 3288.94566    0  129 26492.0000 3288.94566  87.6%     -    0s
     0     0 3326.45738    0  151 26492.0000 3326.45738  87.4%     -    0s
     0     0 3360.84805    0  172 26492.0000 3360.84805  87.3%     -    0s
     0     0 3379.80018    0  164 26492.0000 3379.80018  87.2%     -    0s
     0     0 3437.10317    0  164 26492.0000 3437.10317  87.0%     -    0s
     0     0 3439.28938    0  173 26492.0000 3439.28938  87.0%     -    0s
     0     0 3439.29542    0  174 26492.0000 3439.29542  87.0%     -    0s
H    0     0                    25886.000000 3439.29542  86.7%     -    0s
H    0     0                    25263.000000 3439.29542  86.4%     -    0s
     0     0 4773.92818    0  187 25263.0000 4773.92818  81.1%     -    0s
     0     0 4832.10464    0  175 25263.0000 4832.10464  80.9%     -    0s
     0     0 4859.19655    0  199 25263.0000 4859.19655  80.8%     -    0s
     0     0 4869.33991    0  182 25263.0000 4869.33991  80.7%     -    0s
     0     0 4888.39849    0  202 25263.0000 4888.39849  80.6%     -    0s
     0     0 4927.25157    0  207 25263.0000 4927.25157  80.5%     -    0s
     0     0 4931.51984    0  207 25263.0000 4931.51984  80.5%     -    0s
     0     0 4939.22199    0  208 25263.0000 4939.22199  80.4%     -    0s
     0     0 4947.89396    0  210 25263.0000 4947.89396  80.4%     -    0s
     0     0 4947.90755    0  210 25263.0000 4947.90755  80.4%     -    0s
     0     0 4949.62130    0  210 25263.0000 4949.62130  80.4%     -    0s
     0     0 5385.07309    0  209 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0   74 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0  138 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0  125 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0  121 25263.0000 5385.07309  78.7%     -    0s
     0     0 5484.60527    0  127 25263.0000 5484.60527  78.3%     -    0s
     0     0 5584.86598    0  142 25263.0000 5584.86598  77.9%     -    0s
     0     0 5687.04937    0  145 25263.0000 5687.04937  77.5%     -    0s
     0     0 5819.63414    0  152 25263.0000 5819.63414  77.0%     -    1s
     0     0 5864.04131    0  155 25263.0000 5864.04131  76.8%     -    1s
     0     0 5889.56703    0  162 25263.0000 5889.56703  76.7%     -    1s
     0     0 5891.26291    0  165 25263.0000 5891.26291  76.7%     -    1s
     0     0 6454.12108    0  161 25263.0000 6454.12108  74.5%     -    1s
H    0     0                    20968.000000 6461.34608  69.2%     -    1s
     0     0 6507.95286    0  168 20968.0000 6507.95286  69.0%     -    1s
     0     0 6510.49800    0  176 20968.0000 6510.49800  69.0%     -    1s
     0     0 7220.22461    0  212 20968.0000 7220.22461  65.6%     -    1s
H    0     0                    20454.000000 7326.63849  64.2%     -    1s
     0     0 7326.63849    0  203 20454.0000 7326.63849  64.2%     -    1s
     0     0 7375.35147    0  218 20454.0000 7375.35147  63.9%     -    1s
     0     0 7381.68340    0  229 20454.0000 7381.68340  63.9%     -    1s
H    0     0                    19738.000000 7381.68340  62.6%     -    1s
H    0     0                    19666.000000 7381.68340  62.5%     -    1s
H    0     0                    19574.000000 7381.68340  62.3%     -    1s
H    0     0                    19540.000000 7381.68340  62.2%     -    1s
     0     0 7954.37335    0  246 19540.0000 7954.37335  59.3%     -    1s
     0     0 8044.77504    0  226 19540.0000 8044.77504  58.8%     -    1s
     0     0 8072.16298    0  239 19540.0000 8072.16298  58.7%     -    1s
     0     0 8086.60814    0  239 19540.0000 8086.60814  58.6%     -    1s
     0     0 8090.86937    0  246 19540.0000 8090.86937  58.6%     -    1s
     0     0 8312.05754    0  245 19540.0000 8312.05754  57.5%     -    1s
     0     0 8357.76313    0  245 19540.0000 8357.76313  57.2%     -    1s
     0     0 8367.14956    0  259 19540.0000 8367.14956  57.2%     -    1s
     0     0 8573.93210    0  242 19540.0000 8573.93210  56.1%     -    1s
H    0     0                    19383.000000 8595.08654  55.7%     -    1s
     0     0 8595.08654    0  243 19383.0000 8595.08654  55.7%     -    1s
     0     0 8599.24342    0  265 19383.0000 8599.24342  55.6%     -    1s
     0     0 8701.65232    0  265 19383.0000 8701.65232  55.1%     -    1s
     0     0 8701.99429    0  265 19383.0000 8701.99429  55.1%     -    1s
     0     2 8702.14193    0  265 19383.0000 8702.14193  55.1%     -    1s
H   28    50                    19079.000000 8817.14518  53.8%   218    2s
H  125    98                    18633.000000 8817.14518  52.7%   130    2s
H  162   122                    18600.000000 8817.14518  52.6%   132    2s
H  205   149                    18597.000000 8817.14518  52.6%   136    2s
H  311   209                    18327.000000 8817.14518  51.9%   137    2s
H  346   243                    18302.000000 8817.14518  51.8%   134    2s
H  810   512                    18264.000000 8817.14518  51.7%   104    3s
H  831   512                    18127.000000 8817.14518  51.4%   103    3s
  2015  1205 11835.2274  122  257 18127.0000 9152.74960  49.5%  84.7    5s
H 2057  1170                    16295.000000 10136.7972  37.8%  82.9    6s
H 2057  1111                    15280.000000 10139.1625  33.6%  82.9    6s
H 2065  1059                    15273.000000 10150.4207  33.5%  82.6    6s
H 2065  1005                    14516.000000 10150.4207  30.1%  82.6    6s
H 2118  1001                    14484.000000 10297.4752  28.9%   105    9s
  2252  1084 10297.4752   38  170 14484.0000 10297.4752  28.9%   118   10s
H 2466  1117                    14458.000000 10297.4752  28.8%   123   10s
* 2677  1078              68    13995.000000 10297.4752  26.4%   122   10s
  4592   947 13921.0000   48   70 13995.0000 10297.4752  26.4%   145   15s
  7809  1842 10297.4752   40  121 13995.0000 10297.4752  26.4%   160   20s
 11498  2711 10297.4752   47  139 13995.0000 10297.4752  26.4%   163   25s
 15276  4310 10991.8916   48  133 13995.0000 10297.4752  26.4%   166   30s
 18850  4899 13102.0000   64   71 13995.0000 10297.4752  26.4%   161   35s
 21110  5392 10297.4752   54  117 13995.0000 10297.4752  26.4%   164   40s
 23937  5855 11664.0000  103   73 13995.0000 10297.4752  26.4%   157   45s
 32335  7532 13416.8038   74  102 13995.0000 10297.4752  26.4%   133   50s
 41582 12693 13522.0000   90   41 13995.0000 10297.4752  26.4%   118   55s
 50029 17379 10768.0836   83  113 13995.0000 10297.4752  26.4%   111   60s
 60731 23190 10297.4752   68  114 13995.0000 10297.4752  26.4%   103   65s
 64082 25330 13352.0000   64   73 13995.0000 10297.4752  26.4%   101   70s
 70823 28958 infeasible   79      13995.0000 10297.4752  26.4%   101   75s
 76128 33505 13163.7601   83  102 13995.0000 10297.4752  26.4%   103   80s
 86256 36226 10853.3684   73  143 13995.0000 10297.4752  26.4%   100   85s
 89711 42204 13912.0000  111   76 13995.0000 10297.4752  26.4%   103   92s
 99695 42327 13458.5000   71   80 13995.0000 10297.4752  26.4%  99.0   95s
 105474 44319 infeasible   57      13995.0000 10363.9957  25.9%   100  100s
 111956 50217 12710.2803   70   84 13995.0000 10453.5944  25.3%   102  106s
 124232 50053 12383.0000   73   83 13995.0000 10623.9924  24.1%   100  110s
 129143 52572 12260.4941   77  113 13995.0000 10731.3612  23.3%   101  115s
 134992 56196 12134.0000   87   96 13995.0000 10780.6909  23.0%   102  120s
 148636 55645 11968.2300   79  102 13995.0000 10933.6533  21.9%   100  125s
 155483 56540     cutoff   72      13995.0000 11038.6514  21.1%   101  130s
 159673 56544 13865.0000   88   50 13995.0000 11154.0487  20.3%   103  136s
 167990 55632     cutoff   71      13995.0000 11291.6230  19.3%   103  140s
 177376 56275 infeasible   85      13995.0000 11427.2268  18.3%   103  145s
 181424 54888 13739.0000   71   76 13995.0000 11537.0127  17.6%   105  150s
 186123 54338 12111.9537   71  114 13995.0000 11638.8843  16.8%   107  155s
 194339 51986 13090.0630   91   74 13995.0000 11797.3665  15.7%   108  161s
 198808 50032 11950.0000   73   79 13995.0000 11918.3897  14.8%   109  165s
 205916 47691     cutoff   84      13995.0000 12083.0000  13.7%   110  171s
 210896 45448 infeasible   65      13995.0000 12204.3860  12.8%   111  175s
 219430 44172 12671.0000  117   75 13995.0000 12305.9689  12.1%   111  180s
 226167 41264 infeasible   95      13995.0000 12427.0000  11.2%   113  186s
 231110 39082 12550.0000   93   79 13995.0000 12526.0000  10.5%   113  190s
 237880 36116 12684.1014   87   85 13995.0000 12630.1508  9.75%   114  195s
 245804 33063 12781.0000   95   85 13995.0000 12768.0000  8.77%   115  200s
 251909 30637 infeasible   87      13995.0000 12867.0000  8.06%   116  205s
 258117 27432 infeasible   70      13995.0000 12966.0000  7.35%   116  210s
 266777 23299 infeasible   88      13995.0000 13090.0000  6.47%   117  216s
 273263 20005     cutoff   99      13995.0000 13187.7599  5.77%   118  220s
 280037 16845 infeasible   97      13995.0000 13324.0000  4.79%   118  225s
 286418 14412 13425.0000   63   76 13995.0000 13408.4693  4.19%   119  230s
 294636 10570 13829.0000   76   73 13995.0000 13529.0000  3.33%   119  235s
 301459  7705 infeasible   97      13995.0000 13610.0000  2.75%   120  240s
 312165  4918 infeasible   96      13995.0000 13736.0000  1.85%   120  245s
 318767  2516 13926.0000  114   84 13995.0000 13832.0000  1.16%   120  250s
 325043   379 13955.0000   89   85 13995.0000 13926.0000  0.49%   121  255s

Cutting planes:
  Learned: 2
  Gomory: 3
  Cover: 25
  Implied bound: 4
  Projected implied bound: 7
  Clique: 75
  MIR: 29
  StrongCG: 4
  Flow cover: 9
  GUB cover: 94
  Inf proof: 16
  Zero half: 5
  Relax-and-lift: 11

Explored 327178 nodes (39572249 simplex iterations) in 256.92 seconds (457.58 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: 13995 14458 14484 ... 18302

Optimal solution found (tolerance 1.00e-04)
Best objective 1.399500000000e+04, best bound 1.399500000000e+04, gap 0.0000%

Tuning Warmup 1

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 22.04.4 LTS")
Copyright (c) 2025, Gurobi Optimization, LLC

Read MPS format model from file models/datt256.mps.bz2
Reading time = 0.46 seconds
datt256: 11077 rows, 262144 columns, 1503732 nonzeros

CPU model: Intel(R) Xeon(R) E-2388G CPU @ 3.20GHz, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
SoftMemLimit  120

Optimize a model with 11077 rows, 262144 columns and 1503732 nonzeros
Model fingerprint: 0xda1d1e83
Variable types: 0 continuous, 262144 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 2e+00]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 1e+00]
Presolve removed 1268 rows and 68505 columns
Presolve time: 3.38s
Presolved: 9809 rows, 193639 columns, 1104799 nonzeros
Variable types: 0 continuous, 193639 integer (193639 binary)
Deterministic concurrent LP optimizer: primal simplex, dual simplex, and barrier
Showing barrier log only...

Root barrier log...

Ordering time: 0.25s

Barrier statistics:
 AA' NZ     : 8.246e+05
 Factor NZ  : 4.496e+06 (roughly 120 MB of memory)
 Factor Ops : 2.310e+09 (less than 1 second per iteration)
 Threads    : 5

                  Objective                Residual
Iter       Primal          Dual         Primal    Dual     Compl     Time
   0   2.56000000e+02  2.54600000e+02  3.96e+02 0.00e+00  9.75e-03     5s
   1   2.56000000e+02  2.44114135e+02  1.90e+01 4.16e-17  4.95e-04     5s
   2   2.56000000e+02  2.47065711e+02  9.89e-01 6.77e-05  4.47e-05     5s
   3   2.56000000e+02  2.53586634e+02  6.08e-02 1.05e-17  6.88e-06     5s
   4   2.56000000e+02  2.55981506e+02  9.59e-04 1.92e-17  5.35e-08     5s
   5   2.56000000e+02  2.56000000e+02  2.21e-08 1.55e-17  1.01e-12     5s
   6   2.56000000e+02  2.56000000e+02  3.80e-11 4.16e-17  9.39e-17     5s

Barrier solved model in 6 iterations and 5.32 seconds (7.85 work units)
Optimal objective 2.56000000e+02


Root crossover log...

    3655 DPushes remaining with DInf 0.0000000e+00                 8s
    2355 DPushes remaining with DInf 0.0000000e+00                10s
     885 DPushes remaining with DInf 0.0000000e+00                15s
       0 DPushes remaining with DInf 0.0000000e+00                19s

       1 PPushes remaining with PInf 0.0000000e+00                19s
       0 PPushes remaining with PInf 0.0000000e+00                19s

  Push phase complete: Pinf 0.0000000e+00, Dinf 0.0000000e+00     19s


Root simplex log...

Iteration    Objective       Primal Inf.    Dual Inf.      Time
    3659    2.5600000e+02   0.000000e+00   0.000000e+00     20s
Concurrent spin time: 3.09s (can be avoided by choosing Method=3)

Solved with barrier
    3659    2.5600000e+02   0.000000e+00   0.000000e+00     23s

Root relaxation: objective 2.560000e+02, 3659 iterations, 18.88 seconds (29.69 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0  256.00000    0 6144          -  256.00000      -     -   82s
     0     0  256.00000    0 6288          -  256.00000      -     -  195s
     0     0  256.00000    0 6385          -  256.00000      -     -  475s
     0     0  256.00000    0 6482          -  256.00000      -     -  865s
     0     0  256.00000    0 6636          -  256.00000      -     - 1097s
     0     0  256.00000    0 6687          -  256.00000      -     - 1226s
     0     0  256.00000    0 6687          -  256.00000      -     - 1284s
     0     2  256.00000    0 6687          -  256.00000      -     - 1741s
     1     3  256.00000    1 6696          -  256.00000      - 34529 1939s
     2     4  256.00000    1 6663          -  256.00000      - 30546 2162s
     3     7  256.00000    2 6795          -  256.00000      - 23955 2409s
     6    14  256.00000    3 6690          -  256.00000      - 20243 2740s
    13    15  256.00000    4 6516          -  256.00000      - 22732 3502s
    14    19  256.00000    4 6816          -  256.00000      - 22407 5401s
    18    31  256.00000    5 6458          -  256.00000      - 24019 7582s
    30   104  256.00000    7 6475          -  256.00000      - 32744 10210s
   103   394  256.00000   11 6434          -  256.00000      - 19606 14635s
   397   824  256.00000   21 6056          -  256.00000      - 10344 25692s
  1022  1248  256.00000   73 3465          -  256.00000      -  7703 44712s
  1703  1448 infeasible   93               -  256.00000      -  6584 54257s
  2156  1449  256.00000   62 6687          -  256.00000      -  6470 57493s
  2158  1450  256.00000   42 5991          -  256.00000      -  6464 57872s
  2159  1451  256.00000   58 6094          -  256.00000      -  6461 58429s
  2160  1452  256.00000   71 6198          -  256.00000      -  6458 58764s
  2161  1452  256.00000   29 6170          -  256.00000      -  6455 59004s
  2162  1453  256.00000   34 6206          -  256.00000      -  6452 59043s
  2163  1454  256.00000   69 6160          -  256.00000      -  6449 59055s
  2164  1454  256.00000   78 6176          -  256.00000      -  6446 59082s
  2165  1455  256.00000   25 6183          -  256.00000      -  6443 59090s
  2166  1456  256.00000   16 6201          -  256.00000      -  6440 59114s
  2167  1456  256.00000   77 6223          -  256.00000      -  6437 59122s
  2168  1457  256.00000   69 6222          -  256.00000      -  6434 59149s
  2169  1458  256.00000   37 6244          -  256.00000      -  6431 59160s
  2170  1458  256.00000   36 6241          -  256.00000      -  6428 59183s
  2171  1459  256.00000   13 6244          -  256.00000      -  6425 59191s
  2172  1460  256.00000   18 6288          -  256.00000      -  6422 59214s
  2173  1460  256.00000   15 6288          -  256.00000      -  6419 59220s
  2174  1461  256.00000   24 6294          -  256.00000      -  6416 59239s
  2175  1462  256.00000   53 6294          -  256.00000      -  6413 59252s
  2176  1462  256.00000   13 6294          -  256.00000      -  6410 59461s
  2177  1465  256.00000   13 6817          -  256.00000      -  30.2 59607s
  2178  1467  256.00000   14 6719          -  256.00000      -  34.2 59690s
  2180  1471  256.00000   15 6684          -  256.00000      -  38.9 59806s
  2185  1476  256.00000   16 6699          -  256.00000      -  54.9 60084s
  2192  1482  256.00000   17 6813          -  256.00000      -  94.0 60347s
  2200  1508  256.00000   18 6882          -  256.00000      -   120 60957s
  2229  1556  256.00000   20 6843          -  256.00000      -   213 62068s
  2286  1745  256.00000   27 6550          -  256.00000      -   386 64282s
  2494  1820  256.00000   51 5400          -  256.00000      -   913 68585s
  2639  2540  256.00000   67 4489          -  256.00000      -  1330 80331s
  4185  1969 infeasible   92               -  256.00000      -  2669 83373s
  4279  2007  256.00000   84 3172          -  256.00000      -  2854 86243s
  4353  2056  256.00000   86 3171          -  256.00000      -  2999 89142s
  4444  2231  256.00000   91 2088          -  256.00000      -  3170 95246s
  5260  1854 infeasible   91               -  256.00000      -  3656 98591s
  5389  1857  256.00000   69 4108          -  256.00000      -  3827 102059s
  5443  2027  256.00000   77 3527          -  256.00000      -  3956 107457s
  6339  1659 infeasible  101               -  256.00000      -  4133 110808s
  6443  1664  256.00000   80 3756          -  256.00000      -  4240 113588s
  6485  1809  256.00000   90 3182          -  256.00000      -  4326 118725s
  7275  1647 infeasible  104               -  256.00000      -  4549 121770s
  7411  1655  256.00000   74 3625          -  256.00000      -  4649 124675s
  7451  1803  256.00000   76 3517          -  256.00000      -  4707 128744s
  8328  1682  postponed   92               -  256.00000      -  5054 131104s
  8451  1699  256.00000   82 3599          -  256.00000      -  5130 133973s
  8492  1838  256.00000   85 3385          -  256.00000      -  5195 138059s
  9245  1769 infeasible   99               -  256.00000      -  5225 141109s
  9326  1802  256.00000   89 3512          -  256.00000      -  5283 143601s
  9411  1878  256.00000   96 2868          -  256.00000      -  5348 147735s
 10008  1753 infeasible   97               -  256.00000      -  5454 150307s
 10133  1747  256.00000   86 3414          -  256.00000      -  5484 153280s
 10161  1904  256.00000   88 3358          -  256.00000      -  5533 157216s
 10957  1790  256.00000   74 3780          -  256.00000      -  5622 159996s
 11077  1774  256.00000   77 3410          -  256.00000      -  5665 162263s
 11123  1899  256.00000   80 2894          -  256.00000      -  5722 166409s
 11869  1804 infeasible   93               -  256.00000      -  5747 169325s
 11982  1796  256.00000   75 3445          -  256.00000      -  5783 171701s
 12016  1949  256.00000   77 3319          -  256.00000      -  5831 175901s
 12630  1835 infeasible   91               -  256.00000      -  5848 178853s
 12750  1852  256.00000   78 3354          -  256.00000      -  5878 181317s
 12773  2019  256.00000   82 3015          -  256.00000      -  5908 185542s
 13446  1868 infeasible  102               -  256.00000      -  5886 188112s
 13597  1897  256.00000   92 3321          -  256.00000      -  5910 191004s
 13704  1937  256.00000  103 2648          -  256.00000      -  5951 195840s
 14195  1843 infeasible  116               -  256.00000      -  5954 199095s
 14295  1831  256.00000   77 3285          -  256.00000      -  5980 202167s
 14331  1908  256.00000   79 3289          -  256.00000      -  6021 206466s
 15006  1847 infeasible  102               -  256.00000      -  6023 211797s
 15089  1968  256.00000   94 2984          -  256.00000      -  6101 222514s
 16673  1859 infeasible  105               -  256.00000      -  6184 225325s
 16784  1851  256.00000   87 3323          -  256.00000      -  6207 228073s
 16814  1852  256.00000   88 3405          -  256.00000      -  6245 230792s
 16841  2002  256.00000   79 3438          -  256.00000      -  6276 235842s
 17511  1864 infeasible   99               -  256.00000      -  6297 239430s
 17651  1861  256.00000   88 3329          -  256.00000      -  6328 243321s
 17692  1992  256.00000   90 3311          -  256.00000      -  6372 249366s
 18529  1867 infeasible  108               -  256.00000      -  6368 253135s
 18662  1959  256.00000   96 2850          -  256.00000      -  6393 259207s
 19493  1900 infeasible  110               -  256.00000      -  6407 263003s
 19578  1909 infeasible   94               -  256.00000      -  6446 266680s
 19667  1974  256.00000   80 3263          -  256.00000      -  6489 273805s
 20488  1895 infeasible  105               -  256.00000      -  6477 279132s
 20587  1885  256.00000   84 2047          -  256.00000      -  6553 284378s
 20637  1980  256.00000   84 2304          -  256.00000      -  6601 292488s
 21575  1903 infeasible   88               -  256.00000      -  6578 298944s
 21670  1895 infeasible   85               -  256.00000      -  6649 304882s
 21706  1883 infeasible   77               -  256.00000      -  6694 310297s
 21762  2051  256.00000   84 3389          -  256.00000      -  6749 317830s
 23095  1902 infeasible  103               -  256.00000      -  6709 323321s
 23266  1870 infeasible   79               -  256.00000      -  6738 327681s
 23326  1944  256.00000   84 2825          -  256.00000      -  6787 334675s
 24708  1871 infeasible  112               -  256.00000      -  6753 339154s
 24809  1976  256.00000   96 2904          -  256.00000      -  6786 346510s
 25940  1873 infeasible  112               -  256.00000      -  6753 350646s
 26069  1850  256.00000   95 3039          -  256.00000      -  6779 355143s
 26120  1975  256.00000   77 3481          -  256.00000      -  6813 362939s
 27198  1857 infeasible  108               -  256.00000      -  6749 367247s
 27324  1881  256.00000   94 3298          -  256.00000      -  6780 371400s
 27575  1961  256.00000   82 1872          -  256.00000      -  6797 380386s
 28540  1878  256.00000   85 3315          -  256.00000      -  6830 386322s
 28649  1862  256.00000   87 2983          -  256.00000      -  6860 390875s
 28709  1990  256.00000   89 2987          -  256.00000      -  6893 398533s
 29766  1844 infeasible  100               -  256.00000      -  6880 405951s
 29948  1943  256.00000   91 3352          -  256.00000      -  6926 423902s
 31532  1850 infeasible  111               -  256.00000      -  6920 429323s
 31653  1847  256.00000   86 2826          -  256.00000      -  6947 434519s
 31706  1920  256.00000   87 2849          -  256.00000      -  6983 443113s
 33204  1860 infeasible   92               -  256.00000      -  6990 447263s
 33294  1974  256.00000   88 3381          -  256.00000      -  7013 454549s
 34179  1850 infeasible   97               -  256.00000      -  7025 458996s
 34315  1845 infeasible   96               -  256.00000      -  7051 463570s
 34354  2016  256.00000   76 3457          -  256.00000      -  7076 472226s
 35379  1901  256.00000   75 3395          -  256.00000      -  7025 476796s
 35510  1928  256.00000   79 3023          -  256.00000      -  7042 484584s
 36244  1877 infeasible   79               -  256.00000      -  7035 489757s
 36323  2005  256.00000   85 2833          -  256.00000      -  7066 497433s
 37623  1894 infeasible  100               -  256.00000      -  7081 502147s
 37756  1878 infeasible   88               -  256.00000      -  7102 507363s
 37804  2020  256.00000   80 3304          -  256.00000      -  7125 514183s
 39027  1900 infeasible   97               -  256.00000      -  7073 518803s
 39173  1996  256.00000   82 3317          -  256.00000      -  7091 525241s
 40652  1880 infeasible  105               -  256.00000      -  7118 529758s
 40770  1920  256.00000   89 3278          -  256.00000      -  7133 534377s
 41241  1985  256.00000   80 3483          -  256.00000      -  7140 539961s
 42673  1903 infeasible   99               -  256.00000      -  7176 544119s
 42781  1948  256.00000   92 2889          -  256.00000      -  7192 549522s
 43638  1894 infeasible  100               -  256.00000      -  7166 553562s
 43722  2021  256.00000   95 2910          -  256.00000      -  7180 559882s
 44910  1905 infeasible  105               -  256.00000      -  7185 567549s
 45064  2009  256.00000   92 3064          -  256.00000      -  7220 597584s
 46648  1888 infeasible  108               -  256.00000      -  7211 602729s
 46783  1892  256.00000   94 3010          -  256.00000      -  7235 608237s
 46827  1981  256.00000   97 2886          -  256.00000      -  7259 616685s
 48166  1880 infeasible  106               -  256.00000      -  7267 621960s
 48279  2023  256.00000   86 3330          -  256.00000      -  7292 628881s
 49628  1901 infeasible  102               -  256.00000      -  7287 633365s
 49762  1882  256.00000   90 3284          -  256.00000      -  7300 637449s
 49807  2052  256.00000   92 3259          -  256.00000      -  7317 644298s
 51050  1883 infeasible   97               -  256.00000      -  7311 648455s
 51237  1929  256.00000   89 3278          -  256.00000      -  7323 653630s
 52453  1893 infeasible   97               -  256.00000      -  7331 657520s
 52517  2052  256.00000   96 2989          -  256.00000      -  7347 663639s
 53646  1922 infeasible  115               -  256.00000      -  7332 668507s
 53798  1905 infeasible   87               -  256.00000      -  7342 672888s
 53841  2043  256.00000   93 2870          -  256.00000      -  7356 677925s
 55102  1897 infeasible   95               -  256.00000      -  7338 681601s
 55252  1893  256.00000   86 3268          -  256.00000      -  7349 685259s
 55286  1991  256.00000   88 3196          -  256.00000      -  7366 691237s
 56316  1899 infeasible   91               -  256.00000      -  7354 694978s
 56422  1984  256.00000   91 3324          -  256.00000      -  7359 700698s
 57503  1907  256.00000   76 3396          -  256.00000      -  7353 704195s
 57608  1885  256.00000   78 3292          -  256.00000      -  7364 707734s
 57660  2007  256.00000   83 3285          -  256.00000      -  7377 713605s
 58757  1881 infeasible  105               -  256.00000      -  7362 717563s
 58889  1926  256.00000   87 3287          -  256.00000      -  7375 721485s
 59332  1914  256.00000   87 3378          -  256.00000      -  7378 726297s
 60099  1913 infeasible   94               -  256.00000      -  7366 730459s
 60146  2043  256.00000   88 2974          -  256.00000      -  7378 735677s
 61415  1912 infeasible  101               -  256.00000      -  7375 742289s
 61584  2009  256.00000   87 3274          -  256.00000      -  7400 753828s
 63168  1920 infeasible  107               -  256.00000      -  7389 757466s
 63285  2022  256.00000   91 2718          -  256.00000      -  7402 764706s
 64227  1931 infeasible  102               -  256.00000      -  7380 769307s
 64332  1913 infeasible   83               -  256.00000      -  7389 773249s
 64376  2004  256.00000   91 3344          -  256.00000      -  7402 779683s
 65742  1916 infeasible  108               -  256.00000      -  7363 783889s
 65844  1940  256.00000   94 2897          -  256.00000      -  7372 788453s
 66588  1907 infeasible   90               -  256.00000      -  7357 792095s
 66631  2013  256.00000   85 3172          -  256.00000      -  7369 798551s
 67706  1907 infeasible  102               -  256.00000      -  7367 802943s
 67832  1946  256.00000   95 3286          -  256.00000      -  7375 807856s
 68298  1918  256.00000   88 3362          -  256.00000      -  7370 811576s
 68384  2005  256.00000   92 3279          -  256.00000      -  7383 817853s
 69447  1910 infeasible  103               -  256.00000      -  7360 821772s
 69558  2033  256.00000   87 3017          -  256.00000      -  7367 827528s
 70927  1907 infeasible  121               -  256.00000      -  7344 831396s
 71057  1896 infeasible   81               -  256.00000      -  7349 835131s
 71090  2009  256.00000   92 3297          -  256.00000      -  7360 841538s
 71979  1918  256.00000   89 3340          -  256.00000      -  7335 845416s
 72082  1943 infeasible   91               -  256.00000      -  7341 849571s
 72443  1978  256.00000   87 2686          -  256.00000      -  7342 856096s
 73480  1946 infeasible  113               -  256.00000      -  7351 860174s
 73546  1941 infeasible   93               -  256.00000      -  7361 863730s
 73591  2073  256.00000   82 3302          -  256.00000      -  7371 870312s
 74610  1910 infeasible  113               -  256.00000      -  7365 874302s
 74779  2033  256.00000   91 3121          -  256.00000      -  7371 880319s
 76025  1937 infeasible  105               -  256.00000      -  7344 887184s
 76155  2053  256.00000   96 3071          -  256.00000      -  7361 901472s
 77739  1923 infeasible  111               -  256.00000      -  7348 905398s
 77879  1900 infeasible   97               -  256.00000      -  7355 909853s
 77924  2012  256.00000   84 3303          -  256.00000      -  7365 917498s
 79053  1913 infeasible  105               -  256.00000      -  7361 921833s
 79178  1881 infeasible   96               -  256.00000      -  7370 926152s
 79226  1979  256.00000   96 3011          -  256.00000      -  7382 933627s
 80489  1878 infeasible  108               -  256.00000      -  7363 938000s
 80610  1963  256.00000   96 2989          -  256.00000      -  7371 944770s
 81799  1881 infeasible  112               -  256.00000      -  7354 949144s
 81905  1877  256.00000   95 3282          -  256.00000      -  7361 954040s
 81939  1964  256.00000   96 3253          -  256.00000      -  7371 961010s
 83104  1883 infeasible  108               -  256.00000      -  7362 965050s
 83199  1997  256.00000   88 3001          -  256.00000      -  7370 971863s
 84203  1876 infeasible  101               -  256.00000      -  7360 975790s
 84332  1857 infeasible   93               -  256.00000      -  7366 980561s
 84369  1974  256.00000   77 3403          -  256.00000      -  7377 987714s
 85420  1862 infeasible  103               -  256.00000      -  7355 992248s
 85546  1858 infeasible   93               -  256.00000      -  7361 995835s
 85576  1960  256.00000   80 3415          -  256.00000      -  7373 1002719s
 86647  1846 infeasible  103               -  256.00000      -  7372 1006586s
 86773  1936  256.00000   88 3298          -  256.00000      -  7380 1014310s
 87661  1890 infeasible  100               -  256.00000      -  7372 1018594s
 87745  1890  256.00000   80 3131          -  256.00000      -  7378 1022623s
 87795  2016  256.00000   85 3378          -  256.00000      -  7386 1029595s
 88848  1904 infeasible  100               -  256.00000      -  7378 1035563s
 88972  1892 infeasible   93               -  256.00000      -  7384 1039817s
 89044  2021  256.00000   84 2992          -  256.00000      -  7392 1046496s
...

Tuning Warmup 2

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 22.04.4 LTS")
Copyright (c) 2025, Gurobi Optimization, LLC

Read MPS format model from file models/liu.mps.bz2
Reading time = 0.01 seconds
liu: 2178 rows, 1156 columns, 10626 nonzeros

CPU model: Intel(R) Xeon(R) E-2388G CPU @ 3.20GHz, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
SoftMemLimit  120

Optimize a model with 2178 rows, 1156 columns and 10626 nonzeros
Model fingerprint: 0x08d5f5cf
Variable types: 67 continuous, 1089 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [5e+01, 2e+04]
Presolve removed 0 rows and 2 columns
Presolve time: 0.01s
Presolved: 2178 rows, 1154 columns, 10626 nonzeros
Variable types: 67 continuous, 1087 integer (1087 binary)
Found heuristic solution: objective 6450.0000000

Root relaxation: objective 5.600000e+02, 509 iterations, 0.00 seconds (0.00 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0  560.00000    0  161 6450.00000  560.00000  91.3%     -    0s
H    0     0                    1802.0000000  560.00000  68.9%     -    0s
H    0     0                    1634.0000000  560.00000  65.7%     -    0s
H    0     0                    1578.0000000  560.00000  64.5%     -    0s
     0     0  560.00000    0  264 1578.00000  560.00000  64.5%     -    0s
     0     0  560.00000    0  253 1578.00000  560.00000  64.5%     -    0s
     0     0  560.00000    0  202 1578.00000  560.00000  64.5%     -    0s
     0     0  560.00000    0  189 1578.00000  560.00000  64.5%     -    0s
H    0     0                    1562.0000000  560.00000  64.1%     -    0s
H    0     0                    1550.0000000  560.00000  63.9%     -    0s
H    0     0                    1530.0000000  560.00000  63.4%     -    0s
H    0     0                    1508.0000000  560.00000  62.9%     -    0s
H    0     0                    1486.0000000  560.00000  62.3%     -    0s
H    0     0                    1478.0000000  560.00000  62.1%     -    0s
     0     0  560.00000    0  190 1478.00000  560.00000  62.1%     -    0s
     0     0  560.00000    0  202 1478.00000  560.00000  62.1%     -    0s
H    0     0                    1466.0000000  560.00000  61.8%     -    0s
H    0     0                    1464.0000000  560.00000  61.7%     -    0s
H    0     0                    1444.0000000  560.00000  61.2%     -    0s
     0     0  560.00000    0  164 1444.00000  560.00000  61.2%     -    0s
H    0     0                    1388.0000000  560.00000  59.7%     -    0s
     0     0  560.00000    0  204 1388.00000  560.00000  59.7%     -    0s
H    0     0                    1382.0000000  560.00000  59.5%     -    0s
     0     0  560.00000    0  185 1382.00000  560.00000  59.5%     -    0s
     0     0  560.00000    0  185 1382.00000  560.00000  59.5%     -    0s
     0     2  560.00000    0  174 1382.00000  560.00000  59.5%     -    0s
H   27    63                    1334.0000000  560.00000  58.0%   166    0s
H  632   750                    1320.0000000  560.00000  57.6%  26.1    0s
H  787   799                    1306.0000000  560.00000  57.1%  23.6    0s
H  814   972                    1304.0000000  560.00000  57.1%  23.1    0s
H  866   972                    1292.0000000  560.00000  56.7%  22.3    0s
H 1315  1319                    1256.0000000  560.00000  55.4%  18.2    0s
H 1463  1535                    1244.0000000  560.00000  55.0%  17.2    0s
H 1493  1535                    1230.0000000  560.00000  54.5%  17.5    0s
H 1790  1609                    1208.0000000  560.00000  53.6%  16.3    0s
H 2037  1769                    1194.0000000  560.00000  53.1%  15.8    0s
H 2560  1936                    1186.0000000  560.00000  52.8%  15.7    1s
H 2560  1839                    1180.0000000  560.00000  52.5%  15.7    1s
H 2560  1747                    1172.0000000  560.00000  52.2%  15.7    1s
H 2565  1663                    1171.9999999  560.00000  52.2%  15.7    2s
H 2566  1579                    1166.0000000  560.00000  52.0%  15.7    2s
H 2566  1500                    1164.0000000  560.00000  51.9%  15.7    2s
  3690  2628  734.00000   44  207 1164.00000  560.00000  51.9%  26.1    5s
H16382 10002                    1152.0000000  560.00000  51.4%  14.6    8s
 21379 14073 1120.00000  289  156 1152.00000  560.00000  51.4%  13.7   10s
H21380 13370                    1144.0000000  560.00000  51.0%  13.7   10s
H21380 12701                    1138.0000000  560.00000  50.8%  13.7   10s
H26140 15564                    1137.9999999  560.00000  50.8%  14.9   13s
 30179 17122 1056.00000   84  134 1138.00000  560.00000  50.8%  14.8   15s
 63425 37164 1132.00000  167   41 1138.00000  560.00000  50.8%  14.1   22s
 76053 45512 1046.00000  157   89 1138.00000  560.00000  50.8%  13.5   25s
 121456 81966 1090.00000  159   57 1138.00000  560.00000  50.8%  12.8   30s
H144867 77539                    1124.0000000  560.00000  50.2%  12.2   32s
 165186 93195 1046.00000  154   71 1124.00000  560.00000  50.2%  12.1   35s
 196569 117241 infeasible  128      1124.00000  560.00000  50.2%  12.0   40s
 221935 137607 1006.00000   88  122 1124.00000  560.00000  50.2%  12.0   45s
 254856 162110 1118.00000  124  109 1124.00000  560.00000  50.2%  12.0   50s
 316582 207336  984.00000   89  120 1124.00000  560.00000  50.2%  11.5   55s
H318459 207673                    1123.9999999  560.00000  50.2%  11.5   56s
 348709 232886 1040.00000   87   99 1124.00000  560.00000  50.2%  11.5   60s
 387975 260719  964.00000  152  110 1124.00000  560.00000  50.2%  11.3   65s
 420105 284408 1120.00000  121   80 1124.00000  560.00000  50.2%  11.3   70s
 477144 327286  706.00000   47  166 1124.00000  560.00000  50.2%  11.1   75s
 497982 343678 infeasible  221      1124.00000  560.00000  50.2%  11.1   80s
 528913 367547 1110.00000  146   71 1124.00000  560.00000  50.2%  11.2   85s
 572912 399003 infeasible  167      1124.00000  560.00000  50.2%  11.2   90s
 609385 426837 1076.00000   86  113 1124.00000  560.00000  50.2%  11.1   95s
 660616 465899  818.00000   78  158 1124.00000  560.00000  50.2%  11.1  100s
 688296 485400 1078.00000  101  133 1124.00000  560.00000  50.2%  11.0  105s
 726202 512761 infeasible  167      1124.00000  560.00000  50.2%  11.1  110s
 761366 541216 1034.00000   75  126 1124.00000  560.00000  50.2%  11.1  115s
 796616 566265 1120.00000   72   95 1124.00000  560.00000  50.2%  11.1  120s
 813015 580254 infeasible  100      1124.00000  560.00000  50.2%  11.1  125s
 854624 609619 1118.00000   76  114 1124.00000  560.00000  50.2%  11.1  130s
 887178 635476 1104.00000  216   56 1124.00000  560.00000  50.2%  11.2  135s
 921210 661063 1118.00000   90   91 1124.00000  560.00000  50.2%  11.2  140s
 972668 698684 1122.00000  137  114 1124.00000  560.00000  50.2%  11.1  145s
 1003177 723466 1070.00000  109   94 1124.00000  560.00000  50.2%  11.1  150s
 1034221 744681 1112.00000  115   71 1124.00000  560.00000  50.2%  11.1  155s
 1080436 779645  894.00000   89  126 1124.00000  560.00000  50.2%  11.2  160s
 1126554 814765 1082.00000  127   96 1124.00000  560.00000  50.2%  11.1  165s
 1174857 848825 1120.00000  146   77 1124.00000  560.00000  50.2%  11.1  170s
 1184776 858139  934.00000  134  115 1124.00000  560.00000  50.2%  11.1  175s
 1224711 888139 1084.00000   71  124 1124.00000  560.00000  50.2%  11.1  180s
 1269929 922929  594.00000   43  185 1124.00000  560.00000  50.2%  11.1  185s
 1303719 947510 1026.00000   94  103 1124.00000  560.00000  50.2%  11.1  190s
 1348655 980902  790.00000   69  116 1124.00000  560.00000  50.2%  11.0  195s
 1383699 1007828 infeasible  107      1124.00000  560.00000  50.2%  11.1  200s
 1420317 1037357 1090.00000   95   93 1124.00000  560.00000  50.2%  11.0  205s
 1441479 1051383 1118.00000  131   63 1124.00000  560.00000  50.2%  11.0  210s
 1470793 1074484  958.00000  165  103 1124.00000  560.00000  50.2%  11.1  215s
 1518761 1110159 1118.00000  112   78 1124.00000  560.00000  50.2%  11.1  220s
 1555418 1136771 1118.00000  131   75 1124.00000  560.00000  50.2%  11.1  225s
 1608509 1176419 1104.00000  126   69 1124.00000  560.00000  50.2%  11.0  230s
 1644052 1202174 infeasible  136      1124.00000  560.00000  50.2%  11.0  235s
 1668264 1219621  846.00000   83  150 1124.00000  560.00000  50.2%  11.0  240s
 1698884 1242985  840.00000   85  135 1124.00000  560.00000  50.2%  11.0  245s
 1747517 1279185 infeasible  153      1124.00000  560.00000  50.2%  11.0  250s
 1783486 1307437 1000.00000  148   93 1124.00000  560.00000  50.2%  11.0  255s
 1832557 1342621  804.00000   53  142 1124.00000  560.00000  50.2%  11.0  260s
 1854209 1360122 1118.00000  138   75 1124.00000  560.00000  50.2%  11.0  265s
 1895981 1390078  978.00000   77  129 1124.00000  560.00000  50.2%  11.0  270s
 1926658 1413864 1092.00000  108   88 1124.00000  560.00000  50.2%  11.0  275s
 1987689 1458468 infeasible  161      1124.00000  560.00000  50.2%  10.9  280s
 2004920 1471986 1108.00000  243   52 1124.00000  560.00000  50.2%  10.9  285s
 2046012 1502462 1078.00000  116   91 1124.00000  560.00000  50.2%  10.9  290s
 2082886 1529239 infeasible  134      1124.00000  560.00000  50.2%  11.0  295s
 2118064 1555565 1112.00000  148   53 1124.00000  560.00000  50.2%  11.0  300s
 2167611 1593608  944.00000  145  104 1124.00000  560.00000  50.2%  11.0  305s
 2204705 1619523 1096.00000  176   55 1124.00000  560.00000  50.2%  11.0  310s
 2229218 1638944  922.00000  105  130 1124.00000  560.00000  50.2%  11.0  315s
 2260691 1662603 1116.00000  151   49 1124.00000  560.00000  50.2%  11.0  320s
 2310413 1701325 1122.00000  109  102 1124.00000  560.00000  50.2%  11.0  325s
 2348097 1729572 1116.00000  147   81 1124.00000  560.00000  50.2%  11.0  330s
 2393532 1761428 1120.00000  133   96 1124.00000  560.00000  50.2%  10.9  335s
 2427861 1786196  796.00000   70  157 1124.00000  560.00000  50.2%  10.9  340s
 2451246 1804304 1102.00000  123   97 1124.00000  560.00000  50.2%  11.0  345s
 2494645 1836796 1120.00000   86   87 1124.00000  560.00000  50.2%  11.0  350s
 2531324 1865814 1116.00000  122   72 1124.00000  560.00000  50.2%  11.0  355s
 2576887 1898140  978.00000  121  105 1124.00000  560.00000  50.2%  10.9  360s
 2606396 1919074 1102.00000  199   69 1124.00000  560.00000  50.2%  10.9  365s
 2638306 1944068 1076.00000  171   86 1124.00000  560.00000  50.2%  10.9  370s
 2672141 1969202  818.00000   74  140 1124.00000  560.00000  50.2%  11.0  375s
 2724098 2006987 infeasible  149      1124.00000  560.00000  50.2%  10.9  380s
 2756677 2031507 1118.00000  185   37 1124.00000  560.00000  50.2%  10.9  385s
 2790822 2055577 1116.00000  128   82 1124.00000  560.00000  50.2%  10.9  390s
 2822173 2078897  664.00000   59  192 1124.00000  560.00000  50.2%  10.9  395s
 2867323 2111089 1098.00000   88  125 1124.00000  560.00000  50.2%  10.9  400s
 2899558 2136678 1106.00000   88  100 1124.00000  560.00000  50.2%  10.9  405s
*2910220 2117146             339    1122.0000000  560.00000  50.1%  10.9  405s
H2913648 1759365                    1118.0000000  560.00000  49.9%  10.9  406s
H2915634 1702804                    1114.0000000  560.00000  49.7%  10.9  407s
H2916364 1598659                    1112.0000000  560.00000  49.6%  10.9  407s
H2930622 1364489                    1104.0000000  560.00000  49.3%  10.9  409s
 2934774 1367752 1018.00000  172   92 1104.00000  560.00000  49.3%  10.9  410s
 2960800 1386472 1054.00000  106  115 1104.00000  560.00000  49.3%  10.9  415s
 2992990 1409722 infeasible  143      1104.00000  560.00000  49.3%  10.9  420s
 3022437 1430639 1096.00000  181   49 1104.00000  560.00000  49.3%  11.0  425s
 3046048 1449489  888.00000   59  163 1104.00000  560.00000  49.3%  11.0  430s
 3072949 1469665 1100.00000  176   72 1104.00000  560.00000  49.3%  11.0  435s
 3121031 1505457 1050.00000   86  113 1104.00000  560.00000  49.3%  11.0  440s
 3156610 1529979 1090.00000   80   77 1104.00000  560.00000  49.3%  11.0  445s
 3193504 1557559 infeasible  120      1104.00000  560.00000  49.3%  11.0  450s
H3212098 1570454                    1103.9999999  560.00000  49.3%  11.0  451s
 3218382 1575426 1102.00000  177   42 1104.00000  560.00000  49.3%  11.0  455s
 3242142 1593325  742.00000   54  212 1104.00000  560.00000  49.3%  11.0  460s
 3282263 1623057 1098.00000  129   88 1104.00000  560.00000  49.3%  11.0  465s
...
 164014327 104379772 1090.00000  108   92 1098.00000  594.00000  45.9%  10.2 17845s
 164069224 104418219 1096.00000  151   59 1098.00000  594.00000  45.9%  10.2 17850s
 164126981 104459442 1094.00000  113   72 1098.00000  594.00000  45.9%  10.2 17855s
 164177828 104496051  942.00000   66  105 1098.00000  594.00000  45.9%  10.2 17860s
 164232378 104536259  998.00000  147  107 1098.00000  594.00000  45.9%  10.2 17865s
 164291020 104577553  900.00000  100  125 1098.00000  594.00000  45.9%  10.2 17870s
 164346480 104616962 1018.00000  131  103 1098.00000  594.00000  45.9%  10.2 17875s
 164402078 104656802  972.00000  172   99 1098.00000  594.00000  45.9%  10.2 17880s
 164457736 104696480 1092.00000  130   70 1098.00000  594.00000  45.9%  10.2 17885s
 164513640 104737311 1090.00000  188   60 1098.00000  594.00000  45.9%  10.2 17890s
 164566815 104775204 1090.00000  151   54 1098.00000  594.00000  45.9%  10.2 17895s
 164621332 104814052 1076.00000   85  148 1098.00000  594.00000  45.9%  10.2 17900s
 164677694 104852039 1084.00000  121   81 1098.00000  594.00000  45.9%  10.2 17905s
 164733014 104893105 1076.00000  118   97 1098.00000  594.00000  45.9%  10.2 17910s
 164790095 104931521 1056.00000   89  119 1098.00000  594.00000  45.9%  10.2 17915s
 164834006 104962908  930.00000  110  119 1098.00000  594.00000  45.9%  10.2 17930s
 164885100 104998573 1062.00000  136   89 1098.00000  594.00000  45.9%  10.2 17935s
 164925618 105029216 1096.00000  161   67 1098.00000  594.00000  45.9%  10.2 17940s
 164979640 105066181 1088.00000  155   98 1098.00000  594.00000  45.9%  10.2 17945s
 165034121 105105088 1062.00000  136   98 1098.00000  594.00000  45.9%  10.2 19747s
...

Tuning Warmup 2 – Bound Plot

The Art of Parameter Tuning


%%{init: { 'themeVariables': { 'fontSize': '24px' } } }%%
flowchart TD
  S(Solve model <br> with parameters)
  A(Analyze <br> solver logs)
  F(Formulate <br> hypothesis)
  S --> A --> F --> S

  • Use same hardware
  • Test multiple random seeds for each model (Parameter “Seed”)
  • Test multiple instances of same model type
  • Don’t overtune with too many too specific parameters (“Less is more”)
  • Re-evaluate parameters for new major solver releases

Live Tuning: Model 1

Default parameters with avg. runtime 234 sec:

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000

Optimize a model with 3837 rows, 6966 columns and 17609 nonzeros
Model fingerprint: 0x86fb5f10
Model has 192 simple general constraints
  192 INDICATOR
Variable types: 3157 continuous, 3809 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 6e+04]
  RHS range        [1e+00, 1e+02]
  GenCon coe range [1e+00, 1e+00]
Presolve removed 3456 rows and 4225 columns
Presolve time: 0.08s
Presolved: 381 rows, 2741 columns, 8402 nonzeros
Variable types: 0 continuous, 2741 integer (2693 binary)

Root relaxation: objective 8.250000e+00, 316 iterations, 0.01 seconds (0.01 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    8.25000    0   32          -    8.25000      -     -    0s
     0     0    8.25000    0   75          -    8.25000      -     -    0s
     0     0    8.25000    0   86          -    8.25000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  924.00000    0   94          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  104          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  105          -  924.00000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  924.00000    0  107          -  924.00000      -     -    0s
     0     0  952.06122    0  117          -  952.06122      -     -    0s
     0     0  952.06122    0  117          -  952.06122      -     -    0s
     0     0  952.06122    0  122          -  952.06122      -     -    0s
     0     0  952.06122    0  105          -  952.06122      -     -    0s
     0     0 1324.07692    0  101          - 1324.07692      -     -    0s
     0     0 1324.07692    0  109          - 1324.07692      -     -    0s
     0     0 1324.07692    0   97          - 1324.07692      -     -    0s
     0     0 1324.07692    0   93          - 1324.07692      -     -    0s
     0     0 1371.85296    0  116          - 1371.85296      -     -    0s
     0     0 1413.82692    0  105          - 1413.82692      -     -    0s
     0     0 1416.95192    0  105          - 1416.95192      -     -    0s
     0     0 1416.95192    0  112          - 1416.95192      -     -    0s
H    0     0                    26492.000000 2589.44049  90.2%     -    0s
     0     0 2589.44049    0  129 26492.0000 2589.44049  90.2%     -    0s
     0     0 2589.44049    0  141 26492.0000 2589.44049  90.2%     -    0s
     0     0 2589.44049    0  140 26492.0000 2589.44049  90.2%     -    0s
     0     0 2835.97147    0  142 26492.0000 2835.97147  89.3%     -    0s
     0     0 3288.94566    0  129 26492.0000 3288.94566  87.6%     -    0s
     0     0 3326.45738    0  151 26492.0000 3326.45738  87.4%     -    0s
     0     0 3360.84805    0  172 26492.0000 3360.84805  87.3%     -    0s
     0     0 3379.80018    0  164 26492.0000 3379.80018  87.2%     -    0s
     0     0 3437.10317    0  164 26492.0000 3437.10317  87.0%     -    0s
     0     0 3439.28938    0  173 26492.0000 3439.28938  87.0%     -    0s
     0     0 3439.29542    0  174 26492.0000 3439.29542  87.0%     -    0s
H    0     0                    25886.000000 3439.29542  86.7%     -    0s
H    0     0                    25263.000000 3439.29542  86.4%     -    0s
     0     0 4773.92818    0  187 25263.0000 4773.92818  81.1%     -    0s
     0     0 4832.10464    0  175 25263.0000 4832.10464  80.9%     -    0s
     0     0 4859.19655    0  199 25263.0000 4859.19655  80.8%     -    0s
     0     0 4869.33991    0  182 25263.0000 4869.33991  80.7%     -    0s
     0     0 4888.39849    0  202 25263.0000 4888.39849  80.6%     -    0s
     0     0 4927.25157    0  207 25263.0000 4927.25157  80.5%     -    0s
     0     0 4931.51984    0  207 25263.0000 4931.51984  80.5%     -    0s
     0     0 4939.22199    0  208 25263.0000 4939.22199  80.4%     -    0s
     0     0 4947.89396    0  210 25263.0000 4947.89396  80.4%     -    0s
     0     0 4947.90755    0  210 25263.0000 4947.90755  80.4%     -    0s
     0     0 4949.62130    0  210 25263.0000 4949.62130  80.4%     -    0s
     0     0 5385.07309    0  209 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0   74 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0  138 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0  125 25263.0000 5385.07309  78.7%     -    0s
     0     0 5385.07309    0  121 25263.0000 5385.07309  78.7%     -    0s
     0     0 5484.60527    0  127 25263.0000 5484.60527  78.3%     -    0s
     0     0 5584.86598    0  142 25263.0000 5584.86598  77.9%     -    0s
     0     0 5687.04937    0  145 25263.0000 5687.04937  77.5%     -    0s
     0     0 5819.63414    0  152 25263.0000 5819.63414  77.0%     -    1s
     0     0 5864.04131    0  155 25263.0000 5864.04131  76.8%     -    1s
     0     0 5889.56703    0  162 25263.0000 5889.56703  76.7%     -    1s
     0     0 5891.26291    0  165 25263.0000 5891.26291  76.7%     -    1s
     0     0 6454.12108    0  161 25263.0000 6454.12108  74.5%     -    1s
H    0     0                    20968.000000 6461.34608  69.2%     -    1s
     0     0 6507.95286    0  168 20968.0000 6507.95286  69.0%     -    1s
     0     0 6510.49800    0  176 20968.0000 6510.49800  69.0%     -    1s
     0     0 7220.22461    0  212 20968.0000 7220.22461  65.6%     -    1s
H    0     0                    20454.000000 7326.63849  64.2%     -    1s
     0     0 7326.63849    0  203 20454.0000 7326.63849  64.2%     -    1s
     0     0 7375.35147    0  218 20454.0000 7375.35147  63.9%     -    1s
     0     0 7381.68340    0  229 20454.0000 7381.68340  63.9%     -    1s
H    0     0                    19738.000000 7381.68340  62.6%     -    1s
H    0     0                    19666.000000 7381.68340  62.5%     -    1s
H    0     0                    19574.000000 7381.68340  62.3%     -    1s
H    0     0                    19540.000000 7381.68340  62.2%     -    1s
     0     0 7954.37335    0  246 19540.0000 7954.37335  59.3%     -    1s
     0     0 8044.77504    0  226 19540.0000 8044.77504  58.8%     -    1s
     0     0 8072.16298    0  239 19540.0000 8072.16298  58.7%     -    1s
     0     0 8086.60814    0  239 19540.0000 8086.60814  58.6%     -    1s
     0     0 8090.86937    0  246 19540.0000 8090.86937  58.6%     -    1s
     0     0 8312.05754    0  245 19540.0000 8312.05754  57.5%     -    1s
     0     0 8357.76313    0  245 19540.0000 8357.76313  57.2%     -    1s
     0     0 8367.14956    0  259 19540.0000 8367.14956  57.2%     -    1s
     0     0 8573.93210    0  242 19540.0000 8573.93210  56.1%     -    1s
H    0     0                    19383.000000 8595.08654  55.7%     -    1s
     0     0 8595.08654    0  243 19383.0000 8595.08654  55.7%     -    1s
     0     0 8599.24342    0  265 19383.0000 8599.24342  55.6%     -    1s
     0     0 8701.65232    0  265 19383.0000 8701.65232  55.1%     -    1s
     0     0 8701.99429    0  265 19383.0000 8701.99429  55.1%     -    1s
     0     2 8702.14193    0  265 19383.0000 8702.14193  55.1%     -    1s
H   28    50                    19079.000000 8817.14518  53.8%   218    2s
H  125    98                    18633.000000 8817.14518  52.7%   130    2s
H  162   122                    18600.000000 8817.14518  52.6%   132    2s
H  205   149                    18597.000000 8817.14518  52.6%   136    2s
H  311   209                    18327.000000 8817.14518  51.9%   137    2s
H  346   243                    18302.000000 8817.14518  51.8%   134    2s
H  810   512                    18264.000000 8817.14518  51.7%   104    3s
H  831   512                    18127.000000 8817.14518  51.4%   103    3s
  2015  1205 11835.2274  122  257 18127.0000 9152.74960  49.5%  84.7    5s
H 2057  1170                    16295.000000 10136.7972  37.8%  82.9    6s
H 2057  1111                    15280.000000 10139.1625  33.6%  82.9    6s
H 2065  1059                    15273.000000 10150.4207  33.5%  82.6    6s
H 2065  1005                    14516.000000 10150.4207  30.1%  82.6    6s
H 2118  1001                    14484.000000 10297.4752  28.9%   105    9s
  2252  1084 10297.4752   38  170 14484.0000 10297.4752  28.9%   118   10s
H 2466  1117                    14458.000000 10297.4752  28.8%   123   10s
* 2677  1078              68    13995.000000 10297.4752  26.4%   122   10s
  4592   947 13921.0000   48   70 13995.0000 10297.4752  26.4%   145   15s
  7809  1842 10297.4752   40  121 13995.0000 10297.4752  26.4%   160   20s
 11498  2711 10297.4752   47  139 13995.0000 10297.4752  26.4%   163   25s
 15276  4310 10991.8916   48  133 13995.0000 10297.4752  26.4%   166   30s
 18850  4899 13102.0000   64   71 13995.0000 10297.4752  26.4%   161   35s
 21110  5392 10297.4752   54  117 13995.0000 10297.4752  26.4%   164   40s
 23937  5855 11664.0000  103   73 13995.0000 10297.4752  26.4%   157   45s
 32335  7532 13416.8038   74  102 13995.0000 10297.4752  26.4%   133   50s
 41582 12693 13522.0000   90   41 13995.0000 10297.4752  26.4%   118   55s
 50029 17379 10768.0836   83  113 13995.0000 10297.4752  26.4%   111   60s
 60731 23190 10297.4752   68  114 13995.0000 10297.4752  26.4%   103   65s
 64082 25330 13352.0000   64   73 13995.0000 10297.4752  26.4%   101   70s
 70823 28958 infeasible   79      13995.0000 10297.4752  26.4%   101   75s
 76128 33505 13163.7601   83  102 13995.0000 10297.4752  26.4%   103   80s
 86256 36226 10853.3684   73  143 13995.0000 10297.4752  26.4%   100   85s
 89711 42204 13912.0000  111   76 13995.0000 10297.4752  26.4%   103   92s
 99695 42327 13458.5000   71   80 13995.0000 10297.4752  26.4%  99.0   95s
 105474 44319 infeasible   57      13995.0000 10363.9957  25.9%   100  100s
 111956 50217 12710.2803   70   84 13995.0000 10453.5944  25.3%   102  106s
 124232 50053 12383.0000   73   83 13995.0000 10623.9924  24.1%   100  110s
 129143 52572 12260.4941   77  113 13995.0000 10731.3612  23.3%   101  115s
 134992 56196 12134.0000   87   96 13995.0000 10780.6909  23.0%   102  120s
 148636 55645 11968.2300   79  102 13995.0000 10933.6533  21.9%   100  125s
 155483 56540     cutoff   72      13995.0000 11038.6514  21.1%   101  130s
 159673 56544 13865.0000   88   50 13995.0000 11154.0487  20.3%   103  136s
 167990 55632     cutoff   71      13995.0000 11291.6230  19.3%   103  140s
 177376 56275 infeasible   85      13995.0000 11427.2268  18.3%   103  145s
 181424 54888 13739.0000   71   76 13995.0000 11537.0127  17.6%   105  150s
 186123 54338 12111.9537   71  114 13995.0000 11638.8843  16.8%   107  155s
 194339 51986 13090.0630   91   74 13995.0000 11797.3665  15.7%   108  161s
 198808 50032 11950.0000   73   79 13995.0000 11918.3897  14.8%   109  165s
 205916 47691     cutoff   84      13995.0000 12083.0000  13.7%   110  171s
 210896 45448 infeasible   65      13995.0000 12204.3860  12.8%   111  175s
 219430 44172 12671.0000  117   75 13995.0000 12305.9689  12.1%   111  180s
 226167 41264 infeasible   95      13995.0000 12427.0000  11.2%   113  186s
 231110 39082 12550.0000   93   79 13995.0000 12526.0000  10.5%   113  190s
 237880 36116 12684.1014   87   85 13995.0000 12630.1508  9.75%   114  195s
 245804 33063 12781.0000   95   85 13995.0000 12768.0000  8.77%   115  200s
 251909 30637 infeasible   87      13995.0000 12867.0000  8.06%   116  205s
 258117 27432 infeasible   70      13995.0000 12966.0000  7.35%   116  210s
 266777 23299 infeasible   88      13995.0000 13090.0000  6.47%   117  216s
 273263 20005     cutoff   99      13995.0000 13187.7599  5.77%   118  220s
 280037 16845 infeasible   97      13995.0000 13324.0000  4.79%   118  225s
 286418 14412 13425.0000   63   76 13995.0000 13408.4693  4.19%   119  230s
 294636 10570 13829.0000   76   73 13995.0000 13529.0000  3.33%   119  235s
 301459  7705 infeasible   97      13995.0000 13610.0000  2.75%   120  240s
 312165  4918 infeasible   96      13995.0000 13736.0000  1.85%   120  245s
 318767  2516 13926.0000  114   84 13995.0000 13832.0000  1.16%   120  250s
 325043   379 13955.0000   89   85 13995.0000 13926.0000  0.49%   121  255s

Cutting planes:
  Learned: 2
  Gomory: 3
  Cover: 25
  Implied bound: 4
  Projected implied bound: 7
  Clique: 75
  MIR: 29
  StrongCG: 4
  Flow cover: 9
  GUB cover: 94
  Inf proof: 16
  Zero half: 5
  Relax-and-lift: 11

Explored 327178 nodes (39572249 simplex iterations) in 256.92 seconds (457.58 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: 13995 14458 14484 ... 18302

Optimal solution found (tolerance 1.00e-04)
Best objective 1.399500000000e+04, best bound 1.399500000000e+04, gap 0.0000%

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000
Seed  1

Optimize a model with 3837 rows, 6966 columns and 17609 nonzeros
Model fingerprint: 0x86fb5f10
Model has 192 simple general constraints
  192 INDICATOR
Variable types: 3157 continuous, 3809 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 6e+04]
  RHS range        [1e+00, 1e+02]
  GenCon coe range [1e+00, 1e+00]
Presolve removed 3456 rows and 4225 columns
Presolve time: 0.06s
Presolved: 381 rows, 2741 columns, 8402 nonzeros
Variable types: 0 continuous, 2741 integer (2693 binary)

Root relaxation: objective 8.250000e+00, 342 iterations, 0.00 seconds (0.01 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    8.25000    0   42          -    8.25000      -     -    0s
     0     0    8.25000    0   68          -    8.25000      -     -    0s
     0     0    8.25000    0   73          -    8.25000      -     -    0s
     0     0    8.25000    0   72          -    8.25000      -     -    0s
     0     0  924.00000    0   88          -  924.00000      -     -    0s
     0     0  924.00000    0   76          -  924.00000      -     -    0s
     0     0  924.00000    0   79          -  924.00000      -     -    0s
     0     0  924.00000    0   84          -  924.00000      -     -    0s
     0     0  924.00000    0   85          -  924.00000      -     -    0s
     0     0  933.95879    0  106          -  933.95879      -     -    0s
     0     0  933.95879    0  106          -  933.95879      -     -    0s
     0     0  933.95879    0   97          -  933.95879      -     -    0s
     0     0  933.95879    0   99          -  933.95879      -     -    0s
     0     0  933.95879    0   99          -  933.95879      -     -    0s
     0     0  933.95879    0   97          -  933.95879      -     -    0s
     0     0 1586.68676    0  105          - 1586.68676      -     -    0s
     0     0 2137.64932    0  120          - 2137.64932      -     -    0s
     0     0 2149.05705    0  118          - 2149.05705      -     -    0s
     0     0 2182.74350    0  126          - 2182.74350      -     -    0s
     0     0 2222.75609    0  123          - 2222.75609      -     -    0s
     0     0 2223.08329    0  120          - 2223.08329      -     -    0s
     0     0 3685.17086    0  155          - 3685.17086      -     -    0s
     0     0 3685.17086    0  153          - 3685.17086      -     -    0s
     0     0 3819.57143    0  116          - 3819.57143      -     -    0s
     0     0 3826.08835    0  114          - 3826.08835      -     -    0s
     0     0 3883.32661    0  116          - 3883.32661      -     -    0s
     0     0 3883.32661    0  119          - 3883.32661      -     -    0s
     0     0 3883.32661    0  131          - 3883.32661      -     -    0s
     0     0 4667.97627    0  150          - 4667.97627      -     -    0s
     0     0 4907.80807    0  172          - 4907.80807      -     -    0s
     0     0 4910.06294    0  174          - 4910.06294      -     -    0s
     0     0 5028.55712    0  161          - 5028.55712      -     -    0s
H    0     0                    26647.000000 5073.50466  81.0%     -    0s
     0     0 5073.50466    0  172 26647.0000 5073.50466  81.0%     -    0s
     0     0 5073.50466    0  165 26647.0000 5073.50466  81.0%     -    0s
     0     0 5087.19151    0  166 26647.0000 5087.19151  80.9%     -    0s
     0     0 5087.19151    0  182 26647.0000 5087.19151  80.9%     -    0s
     0     0 5087.19151    0  180 26647.0000 5087.19151  80.9%     -    0s
     0     0 5089.76638    0  182 26647.0000 5089.76638  80.9%     -    0s
     0     0 5235.06462    0  193 26647.0000 5235.06462  80.4%     -    0s
H    0     0                    25094.000000 5242.96314  79.1%     -    0s
     0     0 5242.96314    0  187 25094.0000 5242.96314  79.1%     -    0s
     0     0 5244.06165    0  188 25094.0000 5244.06165  79.1%     -    0s
     0     0 5245.89387    0  188 25094.0000 5245.89387  79.1%     -    0s
     0     0 5345.27905    0  201 25094.0000 5345.27905  78.7%     -    0s
     0     0 5345.27905    0  188 25094.0000 5345.27905  78.7%     -    0s
     0     0 5390.71611    0  191 25094.0000 5390.71611  78.5%     -    0s
     0     0 5390.71611    0  192 25094.0000 5390.71611  78.5%     -    0s
     0     0 5399.30710    0  216 25094.0000 5399.30710  78.5%     -    0s
     0     0 5399.52614    0  209 25094.0000 5399.52614  78.5%     -    0s
     0     0 5528.81699    0  216 25094.0000 5528.81699  78.0%     -    0s
     0     0 5528.81699    0   75 25094.0000 5528.81699  78.0%     -    0s
     0     0 5528.81699    0  123 25094.0000 5528.81699  78.0%     -    0s
     0     0 5528.81699    0  147 25094.0000 5528.81699  78.0%     -    0s
     0     0 5528.81699    0  134 25094.0000 5528.81699  78.0%     -    0s
     0     0 5528.81699    0  135 25094.0000 5528.81699  78.0%     -    0s
     0     0 5833.79611    0  156 25094.0000 5833.79611  76.8%     -    0s
     0     0 5875.87983    0  160 25094.0000 5875.87983  76.6%     -    0s
     0     0 5881.01169    0  167 25094.0000 5881.01169  76.6%     -    0s
     0     0 5881.15134    0  167 25094.0000 5881.15134  76.6%     -    0s
H    0     0                    22143.000000 5881.15134  73.4%     -    1s
     0     0 6858.37084    0  199 22143.0000 6858.37084  69.0%     -    1s
     0     0 6973.86562    0  186 22143.0000 6973.86562  68.5%     -    1s
     0     0 6995.34784    0  203 22143.0000 6995.34784  68.4%     -    1s
     0     0 6995.86669    0  203 22143.0000 6995.86669  68.4%     -    1s
     0     0 7687.07118    0  205 22143.0000 7687.07118  65.3%     -    1s
     0     0 7757.10201    0  215 22143.0000 7757.10201  65.0%     -    1s
     0     0 7766.88465    0  232 22143.0000 7766.88465  64.9%     -    1s
H    0     0                    17622.000000 8003.94241  54.6%     -    1s
     0     0 8003.94241    0  231 17622.0000 8003.94241  54.6%     -    1s
     0     0 8045.70379    0  250 17622.0000 8045.70379  54.3%     -    1s
     0     0 8050.64354    0  243 17622.0000 8050.64354  54.3%     -    1s
     0     0 8070.64659    0  251 17622.0000 8070.64659  54.2%     -    1s
     0     0 8077.22236    0  239 17622.0000 8077.22236  54.2%     -    1s
     0     0 8244.38390    0  241 17622.0000 8244.38390  53.2%     -    1s
     0     0 8285.33786    0  260 17622.0000 8285.33786  53.0%     -    1s
     0     0 8302.80481    0  268 17622.0000 8302.80481  52.9%     -    1s
     0     0 8306.87441    0  268 17622.0000 8306.87441  52.9%     -    1s
     0     0 8435.74580    0  233 17622.0000 8435.74580  52.1%     -    1s
H    0     0                    17387.000000 8467.78324  51.3%     -    1s
     0     0 8467.78324    0  258 17387.0000 8467.78324  51.3%     -    1s
     0     0 8479.67457    0  258 17387.0000 8479.67457  51.2%     -    1s
H    0     0                    16775.000000 8541.02321  49.1%     -    1s
     0     0 8541.02321    0  269 16775.0000 8541.02321  49.1%     -    1s
     0     0 8541.40028    0  260 16775.0000 8541.40028  49.1%     -    1s
     0     2 8543.56588    0  260 16775.0000 8543.56588  49.1%     -    1s
H   96    74                    16754.000000 8574.63041  48.8%   145    2s
H  182   130                    16752.000000 8574.63041  48.8%   122    2s
H  184   130                    16647.000000 8574.63041  48.5%   121    2s
H  185   130                    16591.000000 8574.63041  48.3%   122    2s
H  218   160                    16013.000000 8588.05402  46.4%   117    2s
H  222   160                    15616.000000 8588.05402  45.0%   116    2s
H  300   231                    14513.000000 8588.05402  40.8%   111    2s
H 1218   765                    14411.000000 8599.00000  40.3%  89.7    3s
H 1688  1101                    14038.000000 8599.00000  38.7%  83.1    4s
  1920  1220 10460.0000   56  147 14038.0000 8599.00000  38.7%  79.2    5s
H 2032  1227                    13995.000000 9633.15178  31.2%  74.8    6s
  2118  1289 9813.69467   26  103 13995.0000 9813.69467  29.9%  88.9   10s
  3062  1649 11565.8964   51  151 13995.0000 9813.69467  29.9%   142   15s
  3785  1900 infeasible   52      13995.0000 9813.69467  29.9%   162   20s
  5470  2432 12099.6939   48  149 13995.0000 9813.69467  29.9%   176   25s
  8825  4219 11832.9193   48  109 13995.0000 10106.0457  27.8%   164   30s
 12708  6387 infeasible   59      13995.0000 10367.1276  25.9%   160   35s
 15445  7804     cutoff   38      13995.0000 10454.8217  25.3%   159   40s
 20140  9981 11285.9146   42  209 13995.0000 10651.9356  23.9%   153   45s
 22031 12252 13485.9774   61   90 13995.0000 10722.8602  23.4%   157   50s
 27418 14347 11567.3639   37  167 13995.0000 10844.9239  22.5%   153   55s
 31304 15139 11473.3373   51  191 13995.0000 10918.1054  22.0%   151   60s
 35855 17133 infeasible   44      13995.0000 10990.3372  21.5%   148   65s
 40767 19347 11500.0826   47  172 13995.0000 11079.8497  20.8%   147   70s
 42742 22954 12100.9204   48  135 13995.0000 11119.3413  20.5%   149   76s
 51046 23507 12408.6815   52  153 13995.0000 11207.8499  19.9%   143   81s
 53058 24085 13529.0000   58   52 13995.0000 11249.1605  19.6%   145   85s
 56130 24892 12661.9042   59  133 13995.0000 11296.8802  19.3%   148   91s
 61909 27118     cutoff   52      13995.0000 11351.5956  18.9%   145   95s
 63741 27717 12251.5059   50  121 13995.0000 11384.5193  18.7%   146  101s
 67064 29223 11653.1127   54  172 13995.0000 11434.9813  18.3%   149  107s
 71535 29595 12310.2005   49  150 13995.0000 11494.8562  17.9%   149  111s
 74096 30048 12918.0030   48   97 13995.0000 11535.6909  17.6%   151  116s
 77046 30827 12108.5469   50  172 13995.0000 11570.8698  17.3%   153  121s
 79893 31248 12381.8750   45   87 13995.0000 11601.9185  17.1%   154  126s
 82562 33697 infeasible   45      13995.0000 11636.6445  16.9%   156  132s
 89568 34123 12892.6445   55  165 13995.0000 11687.8996  16.5%   152  137s
 91262 34216 infeasible   63      13995.0000 11707.0275  16.3%   153  140s
 94286 34465 infeasible   47      13995.0000 11745.1708  16.1%   156  146s
 97677 34745 12095.2626   50  134 13995.0000 11788.0904  15.8%   158  152s
 99236 34812     cutoff   58      13995.0000 11809.8548  15.6%   159  155s
 102346 34873     cutoff   41      13995.0000 11850.2360  15.3%   160  162s
 103852 34918 infeasible   56      13995.0000 11870.5881  15.2%   161  165s
 107138 35077 infeasible   48      13995.0000 11911.4483  14.9%   163  171s
 110384 35105     cutoff   46      13995.0000 11951.4461  14.6%   165  177s
 111571 35219 12455.8150   54  163 13995.0000 11969.8704  14.5%   165  180s
 114999 35210 infeasible   56      13995.0000 12007.5898  14.2%   166  186s
 118098 35200 12811.7263   55  106 13995.0000 12048.5839  13.9%   168  192s
 119775 35074 12873.2702   51  101 13995.0000 12067.7430  13.8%   169  195s
 122896 35038 13757.0000   51   97 13995.0000 12097.0000  13.6%   170  201s
 125866 34718 infeasible   66      13995.0000 12142.1614  13.2%   171  207s
 127510 34630     cutoff   44      13995.0000 12162.8538  13.1%   172  210s
 130565 34243     cutoff   44      13995.0000 12195.9312  12.9%   174  217s
 132247 34068 infeasible   49      13995.0000 12217.1161  12.7%   174  220s
 135770 33597     cutoff   41      13995.0000 12260.0420  12.4%   176  226s
 138973 33034     cutoff   55      13995.0000 12308.9682  12.0%   177  232s
 140430 32885 infeasible   54      13995.0000 12328.7499  11.9%   177  235s
 143713 32045     cutoff   50      13995.0000 12369.7741  11.6%   178  241s
 146997 31156 13832.0000   51   84 13995.0000 12415.8662  11.3%   180  247s
 148567 30716     cutoff   48      13995.0000 12437.7993  11.1%   180  250s
 151996 29899 13467.0000   45   92 13995.0000 12486.3773  10.8%   181  256s
 155428 28838 infeasible   62      13995.0000 12522.6976  10.5%   182  262s
 157148 28314     cutoff   60      13995.0000 12561.7469  10.2%   183  266s
 160268 26816     cutoff   54      13995.0000 12616.6081  9.85%   184  271s
 163729 25583     cutoff   61      13995.0000 12676.2930  9.42%   184  277s
 165514 25098 12983.6144   58  132 13995.0000 12701.3095  9.24%   185  280s
 168859 23938     cutoff   61      13995.0000 12738.0000  8.98%   186  286s
 172398 22691 infeasible   47      13995.0000 12798.8502  8.55%   186  291s
 175786 21399 infeasible   54      13995.0000 12840.0000  8.25%   187  297s
 177589 20818 infeasible   51      13995.0000 12879.3373  7.97%   188  300s
 181017 19162     cutoff   47      13995.0000 12921.0000  7.67%   188  305s
 183478 18124 infeasible   51      13995.0000 12976.0000  7.28%   188  311s
 187261 16477 infeasible   55      13995.0000 13050.0000  6.75%   189  316s
 191036 14673 13240.9707   57  133 13995.0000 13108.3651  6.34%   190  321s
 195028 12451 13252.0000   62   81 13995.0000 13206.6077  5.63%   190  326s
 198736 10692 13484.0000   48   96 13995.0000 13296.4200  4.99%   190  331s
 202497  9194 13688.0000   55   91 13995.0000 13376.0000  4.42%   190  336s
 205601  8211     cutoff   68      13995.0000 13451.0000  3.89%   191  340s
 209058  6709 13521.0000   64   53 13995.0000 13472.0000  3.74%   191  345s
 214662  3743 13647.0000   53   65 13995.0000 13607.0000  2.77%   191  351s
 218650  2055 infeasible   60      13995.0000 13760.0000  1.68%   191  355s
 223470   313 13897.0000   56   66 13995.0000 13866.0000  0.92%   192  362s

Cutting planes:
  Learned: 14
  Gomory: 8
  Cover: 259
  Implied bound: 44
  Projected implied bound: 2
  Clique: 160
  MIR: 261
  Mixing: 3
  StrongCG: 111
  Flow cover: 168
  GUB cover: 192
  Inf proof: 6
  Zero half: 4
  Mod-K: 1
  RLT: 1
  Relax-and-lift: 40

Explored 224577 nodes (43048083 simplex iterations) in 363.71 seconds (676.99 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: 13995 14038 14411 ... 16754

Optimal solution found (tolerance 1.00e-04)
Best objective 1.399500000000e+04, best bound 1.399500000000e+04, gap 0.0000%

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000
Seed  2

Optimize a model with 3837 rows, 6966 columns and 17609 nonzeros
Model fingerprint: 0x86fb5f10
Model has 192 simple general constraints
  192 INDICATOR
Variable types: 3157 continuous, 3809 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 6e+04]
  RHS range        [1e+00, 1e+02]
  GenCon coe range [1e+00, 1e+00]
Presolve removed 3456 rows and 4225 columns
Presolve time: 0.06s
Presolved: 381 rows, 2741 columns, 8402 nonzeros
Variable types: 0 continuous, 2741 integer (2693 binary)

Root relaxation: objective 8.250000e+00, 312 iterations, 0.00 seconds (0.01 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    8.25000    0   56          -    8.25000      -     -    0s
     0     0    8.25000    0   77          -    8.25000      -     -    0s
     0     0    8.25000    0   77          -    8.25000      -     -    0s
     0     0    8.25000    0   79          -    8.25000      -     -    0s
     0     0    8.25000    0   78          -    8.25000      -     -    0s
     0     0  924.00000    0   89          -  924.00000      -     -    0s
     0     0  924.00000    0   76          -  924.00000      -     -    0s
     0     0  924.00000    0   64          -  924.00000      -     -    0s
     0     0  924.00000    0   84          -  924.00000      -     -    0s
     0     0  924.00000    0  104          -  924.00000      -     -    0s
     0     0  924.00000    0  100          -  924.00000      -     -    0s
     0     0  924.00000    0   99          -  924.00000      -     -    0s
     0     0  924.00000    0   99          -  924.00000      -     -    0s
     0     0  924.00000    0   99          -  924.00000      -     -    0s
     0     0  924.00000    0   99          -  924.00000      -     -    0s
     0     0  924.00000    0   99          -  924.00000      -     -    0s
     0     0 1159.86131    0  137          - 1159.86131      -     -    0s
     0     0 1314.89280    0  136          - 1314.89280      -     -    0s
     0     0 1820.60126    0  145          - 1820.60126      -     -    0s
     0     0 1864.01759    0  145          - 1864.01759      -     -    0s
     0     0 1902.05373    0  135          - 1902.05373      -     -    0s
     0     0 1970.95900    0  134          - 1970.95900      -     -    0s
     0     0 2004.38085    0  125          - 2004.38085      -     -    0s
     0     0 2005.34787    0  137          - 2005.34787      -     -    0s
     0     0 2007.77430    0  149          - 2007.77430      -     -    0s
     0     0 2007.77430    0  150          - 2007.77430      -     -    0s
H    0     0                    28054.000000 2007.77430  92.8%     -    0s
H    0     0                    28052.000000 2007.77430  92.8%     -    0s
     0     0 3770.58411    0  229 28052.0000 3770.58411  86.6%     -    0s
     0     0 3999.10679    0  206 28052.0000 3999.10679  85.7%     -    0s
     0     0 3999.42674    0  208 28052.0000 3999.42674  85.7%     -    0s
     0     0 4109.19670    0  217 28052.0000 4109.19670  85.4%     -    0s
     0     0 4139.43499    0  217 28052.0000 4139.43499  85.2%     -    0s
     0     0 4176.70279    0  210 28052.0000 4176.70279  85.1%     -    0s
     0     0 4197.43721    0  225 28052.0000 4197.43721  85.0%     -    0s
     0     0 4198.95082    0  216 28052.0000 4198.95082  85.0%     -    0s
     0     0 5767.88806    0  242 28052.0000 5767.88806  79.4%     -    0s
     0     0 5806.91339    0  239 28052.0000 5806.91339  79.3%     -    0s
     0     0 6004.30141    0  222 28052.0000 6004.30141  78.6%     -    0s
     0     0 6103.87352    0  203 28052.0000 6103.87352  78.2%     -    0s
     0     0 6107.55990    0  200 28052.0000 6107.55990  78.2%     -    0s
     0     0 6111.82946    0  211 28052.0000 6111.82946  78.2%     -    0s
     0     0 6440.72635    0  205 28052.0000 6440.72635  77.0%     -    0s
     0     0 6440.72635    0   79 28052.0000 6440.72635  77.0%     -    0s
H    0     0                    23321.000000 6440.72635  72.4%     -    0s
     0     0 6440.72635    0  139 23321.0000 6440.72635  72.4%     -    0s
     0     0 6440.72635    0  136 23321.0000 6440.72635  72.4%     -    0s
     0     0 6440.72635    0  133 23321.0000 6440.72635  72.4%     -    0s
     0     0 6440.72635    0  154 23321.0000 6440.72635  72.4%     -    1s
     0     0 6906.13536    0  166 23321.0000 6906.13536  70.4%     -    1s
     0     0 7017.86945    0  188 23321.0000 7017.86945  69.9%     -    1s
     0     0 7046.72261    0  185 23321.0000 7046.72261  69.8%     -    1s
     0     0 7046.76436    0  181 23321.0000 7046.76436  69.8%     -    1s
     0     0 7502.15248    0  202 23321.0000 7502.15248  67.8%     -    1s
     0     0 7511.15581    0  206 23321.0000 7511.15581  67.8%     -    1s
     0     0 7513.39330    0  204 23321.0000 7513.39330  67.8%     -    1s
H    0     0                    23198.000000 7513.39330  67.6%     -    1s
H    0     0                    20926.000000 7513.39330  64.1%     -    1s
H    0     0                    20141.000000 7513.39330  62.7%     -    1s
H    0     0                    20021.000000 7513.39330  62.5%     -    1s
     0     0 8273.14452    0  231 20021.0000 8273.14452  58.7%     -    1s
     0     0 8354.83367    0  232 20021.0000 8354.83367  58.3%     -    1s
     0     0 8366.38510    0  239 20021.0000 8366.38510  58.2%     -    1s
     0     0 8366.73655    0  237 20021.0000 8366.73655  58.2%     -    1s
     0     0 8817.96450    0  239 20021.0000 8817.96450  56.0%     -    1s
     0     0 8848.50372    0  236 20021.0000 8848.50372  55.8%     -    1s
     0     0 8872.72877    0  255 20021.0000 8872.72877  55.7%     -    1s
H    0     0                    19749.000000 8881.32211  55.0%     -    1s
     0     0 8881.32211    0  254 19749.0000 8881.32211  55.0%     -    1s
     0     0 8959.67896    0  260 19749.0000 8959.67896  54.6%     -    1s
     0     0 8972.35650    0  272 19749.0000 8972.35650  54.6%     -    1s
     0     0 8976.86221    0  276 19749.0000 8976.86221  54.5%     -    1s
     0     0 9079.41972    0  257 19749.0000 9079.41972  54.0%     -    1s
     0     0 9087.96700    0  257 19749.0000 9087.96700  54.0%     -    1s
     0     0 9127.77203    0  249 19749.0000 9127.77203  53.8%     -    1s
     0     0 9128.55345    0  248 19749.0000 9128.55345  53.8%     -    1s
     0     2 9129.25751    0  244 19749.0000 9129.25751  53.8%     -    1s
H   75    73                    19381.000000 9185.67776  52.6%   140    2s
H   78    73                    19236.000000 9185.67776  52.2%   138    2s
H   82    73                    19052.000000 9185.67776  51.8%   138    2s
H  100    86                    16604.000000 9185.67776  44.7%   143    2s
H  122   108                    16307.000000 9185.67776  43.7%   136    2s
H  172   144                    15800.000000 9185.67776  41.9%   138    2s
H  284   239                    15095.000000 9185.67776  39.1%   113    2s
  2261  1796 11772.4914  123  133 15095.0000 9233.36388  38.8%  62.5    5s
  2356  1861 10583.5391  103  157 15095.0000 10583.5391  29.9%  67.3   10s
  2666  1984 10597.9993   32  233 15095.0000 10597.9993  29.8%   113   15s
H 2851  1891                    14536.000000 10597.9993  27.1%   126   16s
  3919  1804 11456.0000   63  208 14536.0000 10597.9993  27.1%   195   20s
* 5177  1615              46    14513.000000 11055.9746  23.8%   246   24s
  5223  1617 12629.5299  105  175 14513.0000 11055.9746  23.8%   247   25s
* 5932  1366              51    13995.000000 11224.4963  19.8%   262   27s
  6754  1266 12585.0000   53  173 13995.0000 11350.0000  18.9%   278   30s
  8098  1415 12973.6349   75  146 13995.0000 11561.0000  17.4%   303   35s
  9355  1643 13601.2378   55  137 13995.0000 11780.0000  15.8%   322   40s
 10304  1801 13439.5488  119  168 13995.0000 11856.6599  15.3%   332   45s
 11710  1862 13041.5366   75  163 13995.0000 11993.0000  14.3%   349   50s
 13371  1929 13150.5489   93  180 13995.0000 12141.0000  13.2%   363   55s
 14847  1766 infeasible  107      13995.0000 12382.0000  11.5%   375   60s
 16638  1539 infeasible   50      13995.0000 12655.0000  9.57%   383   65s
 18767   807 13202.0000   50  141 13995.0000 12991.0000  7.17%   389   71s
 19682   477 13293.0000   97  134 13995.0000 13118.0000  6.27%   389   77s

Cutting planes:
  Learned: 1
  Gomory: 9
  Cover: 312
  Implied bound: 4
  Projected implied bound: 41
  Clique: 130
  MIR: 300
  Mixing: 4
  StrongCG: 115
  Flow cover: 118
  GUB cover: 229
  Inf proof: 1
  Zero half: 23
  Mod-K: 1
  RLT: 6
  Relax-and-lift: 52

Explored 21502 nodes (8259983 simplex iterations) in 79.88 seconds (144.54 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: 13995 14513 14536 ... 19381

Optimal solution found (tolerance 1.00e-04)
Best objective 1.399500000000e+04, best bound 1.399500000000e+04, gap 0.0000%

Model 1: Timeline

Live Tuning: Model 2

Default parameters with avg. runtime 185 sec:

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000

Optimize a model with 796 rows, 520 columns and 3400 nonzeros
Model fingerprint: 0x1cc9437c
Variable types: 260 continuous, 260 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 8e+03]
Found heuristic solution: objective 0.0000000
Presolve removed 370 rows and 200 columns
Presolve time: 0.05s
Presolved: 426 rows, 320 columns, 2380 nonzeros
Found heuristic solution: objective -70.0000000
Variable types: 160 continuous, 160 integer (160 binary)

Root relaxation: objective -1.780000e+02, 209 iterations, 0.00 seconds (0.00 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 -178.00000    0    2  -70.00000 -178.00000   154%     -    0s
H    0     0                    -164.0000000 -178.00000  8.54%     -    0s
H    0     0                    -176.0000000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   10 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   11 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    4 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    7 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    2 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
     0     2 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
H13811  3077                    -176.0000006 -178.00000  1.14%  16.5    1s
H27713  5678                    -176.0000016 -178.00000  1.14%  16.7    2s
 57828  9651 -177.00000   41   10 -176.00000 -178.00000  1.14%  17.8    5s
H61724 10034                    -176.0000040 -178.00000  1.14%  18.0    5s
 138412 20730     cutoff   34      -176.00000 -178.00000  1.14%  19.6   10s
 223036 32402     cutoff   34      -176.00000 -178.00000  1.14%  20.1   15s
H268520 39302                    -176.0000044 -178.00000  1.14%  20.4   17s
 308420 45121     cutoff   38      -176.00000 -178.00000  1.14%  20.5   20s
 386603 55654 -177.00000   35   10 -176.00000 -178.00000  1.14%  20.6   25s
H471448 67421                    -176.0000090 -178.00000  1.14%  20.8   29s
 472490 67488     cutoff   39      -176.00001 -178.00000  1.14%  20.8   30s
 551724 80419     cutoff   37      -176.00001 -178.00000  1.14%  20.8   35s
 640495 91231 -177.00000   40   15 -176.00001 -178.00000  1.14%  20.7   40s
 735139 101393 -176.66667   45   12 -176.00001 -177.97203  1.12%  20.5   45s
 872744 105340 -176.80000   44   30 -176.00001 -177.90625  1.08%  20.0   50s
 1021153 102301     cutoff   41      -176.00001 -177.56757  0.89%  19.5   55s
 1169903 96470     cutoff   48      -176.00001 -177.00000  0.57%  19.0   60s
 1311931 93897 -177.00000   48   14 -176.00001 -177.00000  0.57%  18.7   65s
 1457800 91356 -177.00000   36   26 -176.00001 -177.00000  0.57%  18.5   70s
 1600037 91966 -177.00000   48   18 -176.00001 -177.00000  0.57%  18.4   75s
 1734382 91341 -176.85714   45    8 -176.00001 -177.00000  0.57%  18.3   80s
 1877488 90795     cutoff   37      -176.00001 -177.00000  0.57%  18.1   85s
 2025885 90521 -176.14286   42   16 -176.00001 -177.00000  0.57%  18.0   90s
 2165906 89418 -176.33333   43   13 -176.00001 -177.00000  0.57%  17.9   95s
 2312477 87721 -176.99744   42   16 -176.00001 -177.00000  0.57%  17.8  100s
 2455805 84298 -177.00000   41   19 -176.00001 -177.00000  0.57%  17.7  105s
 2589971 82639     cutoff   46      -176.00001 -177.00000  0.57%  17.7  110s
 2735908 82513 -177.00000   40    6 -176.00001 -177.00000  0.57%  17.6  115s
 2880696 80738 -176.14286   46   20 -176.00001 -177.00000  0.57%  17.5  120s
 3022292 78536     cutoff   38      -176.00001 -177.00000  0.57%  17.5  125s
 3163229 75618 -176.50000   40   15 -176.00001 -177.00000  0.57%  17.4  130s
 3301618 72529 -177.00000   40   15 -176.00001 -177.00000  0.57%  17.4  135s
 3435129 71611 -177.00000   43   18 -176.00001 -177.00000  0.57%  17.4  140s
 3575826 68694 -177.00000   50   17 -176.00001 -177.00000  0.57%  17.3  145s
 3713198 65974 -176.60000   50    6 -176.00001 -177.00000  0.57%  17.3  150s
 3850847 64234     cutoff   47      -176.00001 -177.00000  0.57%  17.3  155s
 3986280 62127     cutoff   44      -176.00001 -177.00000  0.57%  17.3  160s
 4122204 57897 -177.00000   45   12 -176.00001 -177.00000  0.57%  17.2  165s
 4257912 55126 -177.00000   43   12 -176.00001 -177.00000  0.57%  17.2  170s
 4394033 50977 -176.75000   48   16 -176.00001 -177.00000  0.57%  17.2  175s
 4542210 37956 -176.60000   49   20 -176.00001 -176.95804  0.54%  17.0  180s

Cutting planes:
  Gomory: 2
  Projected implied bound: 5
  MIR: 15
  Flow cover: 60
  Relax-and-lift: 5

Explored 4675055 nodes (78834345 simplex iterations) in 184.12 seconds (195.19 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: -176 -176 -176 ... 0

Optimal solution found (tolerance 1.00e-04)
Best objective -1.760000000000e+02, best bound -1.760000000000e+02, gap 0.0000%

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000
Seed  1

Optimize a model with 796 rows, 520 columns and 3400 nonzeros
Model fingerprint: 0x1cc9437c
Variable types: 260 continuous, 260 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 8e+03]
Found heuristic solution: objective 0.0000000
Presolve removed 370 rows and 200 columns
Presolve time: 0.01s
Presolved: 426 rows, 320 columns, 2380 nonzeros
Found heuristic solution: objective -70.0000000
Variable types: 160 continuous, 160 integer (160 binary)

Root relaxation: objective -1.780000e+02, 218 iterations, 0.00 seconds (0.00 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 -178.00000    0    3  -70.00000 -178.00000   154%     -    0s
H    0     0                    -164.0000000 -178.00000  8.54%     -    0s
H    0     0                    -176.0000000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   12 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   16 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   16 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    4 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   10 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    4 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    4 -176.00000 -178.00000  1.14%     -    0s
     0     2 -178.00000    0    4 -176.00000 -178.00000  1.14%     -    0s
 55160  8596 -177.94643   31   20 -176.00000 -178.00000  1.14%  19.8    5s
H77394 11100                    -176.0000006 -178.00000  1.14%  20.3    6s
H78715 11310                    -176.0000013 -178.00000  1.14%  20.3    6s
H78716 11310                    -176.0000015 -178.00000  1.14%  20.3    6s
H78723 11310                    -176.0000017 -178.00000  1.14%  20.3    6s
 139604 18899 -178.00000   31   26 -176.00000 -178.00000  1.14%  20.3   10s
H160115 21314                    -176.0000018 -178.00000  1.14%  20.1   11s
H221985 27464                    -176.0000020 -178.00000  1.14%  19.6   14s
 231028 28474     cutoff   55      -176.00000 -178.00000  1.14%  19.6   15s
 319554 37607 -177.37500   39   21 -176.00000 -177.98214  1.13%  19.7   20s
 460767 34548 -177.00000   39   16 -176.00000 -177.00000  0.57%  19.0   25s
 594494 31649     cutoff   37      -176.00000 -177.00000  0.57%  18.9   30s
 733548 29972 -176.57143   41   20 -176.00000 -177.00000  0.57%  18.8   35s
 877229 29492 -177.00000   45   11 -176.00000 -177.00000  0.57%  18.5   40s
H894477 29603                    -176.0000024 -177.00000  0.57%  18.4   40s
 1022943 28842 -176.92667   39   23 -176.00000 -177.00000  0.57%  18.2   45s
 1168192 25930 -176.95575   35   31 -176.00000 -177.00000  0.57%  18.2   50s
 1317248 24073 -176.50000   45    9 -176.00000 -177.00000  0.57%  18.1   55s
 1467321 21558 -177.00000   49   14 -176.00000 -177.00000  0.57%  18.0   60s
 1616657 18996 -177.00000   38    5 -176.00000 -177.00000  0.57%  18.0   65s

Cutting planes:
  Gomory: 3
  Projected implied bound: 3
  MIR: 4
  Flow cover: 11
  Relax-and-lift: 2

Explored 1769810 nodes (31353851 simplex iterations) in 69.67 seconds (71.89 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: -176 -176 -176 ... -164

Optimal solution found (tolerance 1.00e-04)
Best objective -1.760000000000e+02, best bound -1.760000024167e+02, gap 0.0000%

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000
Seed  2

Optimize a model with 796 rows, 520 columns and 3400 nonzeros
Model fingerprint: 0x1cc9437c
Variable types: 260 continuous, 260 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+03]
  Objective range  [1e+00, 1e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 8e+03]
Found heuristic solution: objective 0.0000000
Presolve removed 370 rows and 200 columns
Presolve time: 0.01s
Presolved: 426 rows, 320 columns, 2380 nonzeros
Found heuristic solution: objective -70.0000000
Variable types: 160 continuous, 160 integer (160 binary)

Root relaxation: objective -1.780000e+02, 232 iterations, 0.00 seconds (0.00 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 -178.00000    0    2  -70.00000 -178.00000   154%     -    0s
H    0     0                    -164.0000000 -178.00000  8.54%     -    0s
H    0     0                    -176.0000000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    8 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    8 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   16 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    7 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   20 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   14 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0   14 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
     0     0 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
     0     2 -178.00000    0    9 -176.00000 -178.00000  1.14%     -    0s
H13867  3658                    -176.0000001 -178.00000  1.14%  15.8    1s
H15455  4098                    -176.0000001 -178.00000  1.14%  15.7    1s
H16942  4341                    -176.0000002 -178.00000  1.14%  15.8    1s
 61645 13397 -178.00000   36   12 -176.00000 -178.00000  1.14%  17.1    5s
H73102 15337                    -176.0000004 -178.00000  1.14%  17.5    5s
H80456 16726                    -176.0000005 -178.00000  1.14%  17.8    6s
H97379 20024                    -176.0000007 -178.00000  1.14%  18.2    6s
H97528 20024                    -176.0000012 -178.00000  1.14%  18.2    6s
H134731 27731                    -176.0000020 -178.00000  1.14%  18.9    9s
 149818 31330 -177.13483   35   20 -176.00000 -178.00000  1.14%  19.0   10s
H157001 32523                    -176.0000025 -178.00000  1.14%  19.0   10s
 232977 47363 -176.71429   39   16 -176.00000 -178.00000  1.14%  19.0   15s
 316203 63440 -177.00000   46    8 -176.00000 -178.00000  1.14%  19.2   20s
 399010 79385 -177.00000   39   19 -176.00000 -178.00000  1.14%  19.3   25s
 486032 94503 -177.00000   40   12 -176.00000 -178.00000  1.14%  19.4   30s
 565299 109380     cutoff   47      -176.00000 -178.00000  1.14%  19.4   35s
 655897 124033     cutoff   38      -176.00000 -178.00000  1.14%  19.3   40s
 740935 137384 -177.70833   39   21 -176.00000 -178.00000  1.14%  19.3   45s
 831620 149436 -177.00000   46   18 -176.00000 -177.97260  1.12%  19.2   50s
 973238 162700     cutoff   42      -176.00000 -177.92000  1.09%  18.8   55s
 1129527 167828     cutoff   51      -176.00000 -177.62500  0.92%  18.2   60s
 1288031 165089 -176.54167   44    9 -176.00000 -177.12500  0.64%  17.6   65s
 1467131 160438     cutoff   43      -176.00000 -177.08696  0.62%  16.8   70s
 1605530 161295 -177.00000   42   15 -176.00000 -177.00000  0.57%  16.8   75s
 1746593 161748 -177.00000   42   11 -176.00000 -177.00000  0.57%  16.8   80s
 1885237 162239     cutoff   44      -176.00000 -177.00000  0.57%  16.7   85s
 2029624 162123 -177.00000   43   21 -176.00000 -177.00000  0.57%  16.7   90s
 2176534 161451     cutoff   41      -176.00000 -177.00000  0.57%  16.6   95s
 2324629 160862     cutoff   43      -176.00000 -177.00000  0.57%  16.6  100s
 2465643 160804 -176.83871   41   19 -176.00000 -177.00000  0.57%  16.5  105s
 2605385 161323 -177.00000   37   20 -176.00000 -177.00000  0.57%  16.6  110s
 2749461 162140 -176.76068   48   19 -176.00000 -177.00000  0.57%  16.5  115s
 2892791 162216 -177.00000   39   17 -176.00000 -177.00000  0.57%  16.5  120s
 3033475 163614     cutoff   46      -176.00000 -177.00000  0.57%  16.5  125s
 3170374 164103 -177.00000   40   24 -176.00000 -177.00000  0.57%  16.5  130s
 3308092 164781 -177.00000   41   24 -176.00000 -177.00000  0.57%  16.5  135s
 3453603 165237     cutoff   45      -176.00000 -177.00000  0.57%  16.5  140s
 3606343 166337 -177.00000   37   12 -176.00000 -177.00000  0.57%  16.4  145s
 3751715 166947     cutoff   44      -176.00000 -177.00000  0.57%  16.4  150s
 3893972 166686 -176.14286   43   21 -176.00000 -177.00000  0.57%  16.4  155s
 4034230 168423 -176.87755   44    7 -176.00000 -177.00000  0.57%  16.4  160s
 4180008 167990 -177.00000   36   22 -176.00000 -177.00000  0.57%  16.4  165s
 4327837 168632 -176.14286   43   23 -176.00000 -177.00000  0.57%  16.4  170s
 4471362 166930     cutoff   45      -176.00000 -177.00000  0.57%  16.4  175s
 4622247 167288 -176.94898   42   12 -176.00000 -177.00000  0.57%  16.3  180s
 4767321 166718 -177.00000   44   12 -176.00000 -177.00000  0.57%  16.3  185s
 4906359 167490     cutoff   42      -176.00000 -177.00000  0.57%  16.3  190s
 5041380 168887 -177.00000   43   20 -176.00000 -177.00000  0.57%  16.4  195s
 5182444 166686 -176.44444   46   10 -176.00000 -177.00000  0.57%  16.4  200s
 5326658 164814 -177.00000   42   21 -176.00000 -177.00000  0.57%  16.4  205s
 5475192 164891 -177.00000   44    8 -176.00000 -177.00000  0.57%  16.4  210s
 5618994 162784 -177.00000   41   16 -176.00000 -177.00000  0.57%  16.4  215s
 5759588 162396 -176.22222   44   15 -176.00000 -177.00000  0.57%  16.4  220s
 5903643 161610 -176.33333   45    5 -176.00000 -177.00000  0.57%  16.4  225s
 6047557 158598     cutoff   43      -176.00000 -177.00000  0.57%  16.4  230s
 6194681 160651     cutoff   43      -176.00000 -177.00000  0.57%  16.4  235s
 6342938 161284 -177.00000   41   21 -176.00000 -177.00000  0.57%  16.3  240s
 6479753 162405 -176.87755   46   19 -176.00000 -177.00000  0.57%  16.4  245s
 6631131 162141 -177.00000   37   26 -176.00000 -177.00000  0.57%  16.4  250s
 6776836 159917 -177.00000   43   18 -176.00000 -177.00000  0.57%  16.4  255s
 6911974 158072 -177.00000   34   19 -176.00000 -177.00000  0.57%  16.4  260s
 7055209 154222 -177.00000   43   17 -176.00000 -177.00000  0.57%  16.4  265s
 7201872 150289 -177.00000   45   14 -176.00000 -177.00000  0.57%  16.4  270s
 7336777 145281 -176.94521   44   25 -176.00000 -177.00000  0.57%  16.4  275s
 7472636 139846 -177.00000   39   16 -176.00000 -177.00000  0.57%  16.4  280s
 7625162 127313 -176.93846   41   11 -176.00000 -176.97183  0.55%  16.3  285s
 7773041 92526     cutoff   41      -176.00000 -176.79343  0.45%  16.2  290s
 7935900 58182     cutoff   44      -176.00000 -176.50000  0.28%  16.1  295s
 8095472 29320     cutoff   43      -176.00000 -176.33333  0.19%  16.0  300s

Cutting planes:
  Gomory: 5
  Lift-and-project: 1
  Projected implied bound: 17
  MIR: 13
  Flow cover: 53
  Relax-and-lift: 9

Explored 8176393 nodes (130213938 simplex iterations) in 302.45 seconds (330.25 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: -176 -176 -176 ... -176

Optimal solution found (tolerance 1.00e-04)
Best objective -1.760000000000e+02, best bound -1.760000000000e+02, gap 0.0000%

Model 2: Timeline

Live Tuning: Model 3

Default parameters with avg. runtime 68 sec:

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000

Optimize a model with 12500 rows, 8675 columns and 61725 nonzeros
Model fingerprint: 0x2e4cffc6
Variable types: 675 continuous, 8000 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 2e+02]
  Objective range  [2e+00, 8e+01]
  Bounds range     [1e+00, 2e+02]
  RHS range        [7e-15, 2e+02]
Presolve removed 7900 rows and 1350 columns
Presolve time: 0.10s
Presolved: 4600 rows, 7325 columns, 42850 nonzeros
Variable types: 600 continuous, 6725 integer (6725 binary)

Root relaxation: objective 3.328500e+02, 1503 iterations, 0.04 seconds (0.08 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0  332.85000    0   24          -  332.85000      -     -    0s
H    0     0                    1141.3000000  332.85000  70.8%     -    0s
H    0     0                    1032.5300000  332.85000  67.8%     -    0s
H    0     0                     896.7700000  332.85000  62.9%     -    0s
H    0     0                     795.7900000  332.85000  58.2%     -    0s
H    0     0                     751.7100000  332.85000  55.7%     -    0s
     0     0  332.85000    0   24  751.71000  332.85000  55.7%     -    0s
H    0     0                     750.9100000  332.85000  55.7%     -    0s
     0     0  332.85000    0   36  750.91000  332.85000  55.7%     -    0s
     0     0  332.85000    0   22  750.91000  332.85000  55.7%     -    0s
H    0     0                     707.1500000  332.85000  52.9%     -    0s
     0     0  332.85000    0   22  707.15000  332.85000  52.9%     -    0s
     0     0  334.62000    0   22  707.15000  334.62000  52.7%     -    0s
     0     0  334.62000    0   22  707.15000  334.62000  52.7%     -    0s
     0     0  334.62000    0   22  707.15000  334.62000  52.7%     -    0s
     0     0  334.62000    0   22  707.15000  334.62000  52.7%     -    0s
H    0     0                     698.7400000  335.86000  51.9%     -    0s
H    0     0                     684.2000000  335.86000  50.9%     -    0s
     0     2  335.86000    0   22  684.20000  335.86000  50.9%     -    0s
H   52    55                     546.9000000  343.20000  37.2%  54.5    0s
H  102   104                     543.8000000  343.20000  36.9%  69.2    0s
H  105   104                     543.2700000  343.20000  36.8%  68.6    0s
H  136   143                     519.0900000  343.20000  33.9%  68.1    0s
H  144   143                     495.0000000  343.20000  30.7%  65.8    0s
H  206   186                     490.4700000  343.20000  30.0%  56.2    0s
H  718   496                     483.1000000  354.80000  26.6%  40.0    1s
H 1142   642                     479.3200000  362.84167  24.3%  36.0    1s
H 2003   806                     468.9400000  370.56000  21.0%  33.7    2s
  3307  1118  419.10000   14   24  468.94000  393.70500  16.0%  31.8    5s
H 4972   931                     468.4700000  408.30146  12.8%  35.9    8s
H 6028   587                     467.5000000  419.31000  10.3%  35.3    9s
  6713   444 infeasible   39       467.50000  424.98342  9.09%  35.4   10s

Cutting planes:
  Learned: 4
  Implied bound: 25
  Clique: 26
  MIR: 3
  RLT: 7

Explored 8285 nodes (288439 simplex iterations) in 11.24 seconds (27.23 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: 467.5 468.47 468.94 ... 543.8

Optimal solution found (tolerance 1.00e-04)
Best objective 4.675000000000e+02, best bound 4.675000000000e+02, gap 0.0000%

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000
Seed  1

Optimize a model with 12500 rows, 8675 columns and 61725 nonzeros
Model fingerprint: 0x2e4cffc6
Variable types: 675 continuous, 8000 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 2e+02]
  Objective range  [2e+00, 8e+01]
  Bounds range     [1e+00, 2e+02]
  RHS range        [7e-15, 2e+02]
Presolve removed 7900 rows and 1350 columns
Presolve time: 0.08s
Presolved: 4600 rows, 7325 columns, 42850 nonzeros
Variable types: 600 continuous, 6725 integer (6725 binary)

Root relaxation: objective 3.328500e+02, 1377 iterations, 0.04 seconds (0.07 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0  332.85000    0   22          -  332.85000      -     -    0s
H    0     0                     836.4800000  332.85000  60.2%     -    0s
H    0     0                     741.4600000  332.85000  55.1%     -    0s
H    0     0                     671.8200000  332.85000  50.5%     -    0s
     0     0  332.85000    0   22  671.82000  332.85000  50.5%     -    0s
     0     0  332.85000    0   22  671.82000  332.85000  50.5%     -    0s
H    0     0                     665.9800000  332.85000  50.0%     -    0s
     0     0  332.85000    0   22  665.98000  332.85000  50.0%     -    0s
H    0     0                     660.0700000  332.85000  49.6%     -    0s
     0     0  332.85000    0   24  660.07000  332.85000  49.6%     -    0s
     0     0  332.85000    0   22  660.07000  332.85000  49.6%     -    0s
     0     0  332.85000    0   24  660.07000  332.85000  49.6%     -    0s
H    0     0                     656.6500000  332.85000  49.3%     -    0s
     0     0  332.85000    0   22  656.65000  332.85000  49.3%     -    0s
     0     0  332.85000    0   22  656.65000  332.85000  49.3%     -    0s
     0     2  341.28000    0   22  656.65000  341.28000  48.0%     -    0s
H   45    55                     640.4300000  343.20000  46.4%  61.4    0s
H   52    55                     609.1900000  343.20000  43.7%  58.3    0s
H   53    55                     593.4300000  343.20000  42.2%  59.4    0s
H   72    77                     563.7700000  343.20000  39.1%  65.7    0s
H   75    77                     559.1900000  343.20000  38.6%  66.9    0s
H   77    77                     546.9800000  343.20000  37.3%  68.0    0s
H   79    77                     540.6300000  343.20000  36.5%  66.3    0s
H  116   116                     538.7500000  343.20000  36.3%  59.6    0s
H  117   116                     525.4200000  343.20000  34.7%  59.6    0s
H  633   473                     519.7600000  349.55509  32.7%  39.4    1s
H  714   531                     513.3200000  349.58383  31.9%  40.5    1s
H  938   646                     501.6500000  352.66152  29.7%  39.3    1s
H 1178   740                     499.7700000  355.72261  28.8%  37.7    1s
H 1216   685                     483.9300000  355.72261  26.5%  37.6    1s
H 1304   669                     472.8500000  355.72261  24.8%  37.5    1s
H 2335  1015                     470.9700000  366.42000  22.2%  35.3    2s
H 2459  1033                     467.5000000  366.42000  21.6%  35.1    3s
  2601  1074  366.42000   20   39  467.50000  366.42000  21.6%  35.6    5s
  6965  2347  423.41753   47   28  467.50000  366.42000  21.6%  33.0   10s
 12720  4310  453.25236   25   27  467.50000  376.17000  19.5%  30.6   15s
 17657  6071  386.36500   59   12  467.50000  383.69000  17.9%  28.9   20s
 24998  8814  449.28721   65   24  467.50000  388.85000  16.8%  28.1   25s
 29798 10175  397.31000   41   22  467.50000  390.92000  16.4%  27.8   38s
 29830 10196  400.25209   55   53  467.50000  390.92000  16.4%  27.7   40s
 29996 10287  438.85317   49   13  467.50000  390.92000  16.4%  28.3   45s
 31731 10584  397.20300   54   39  467.50000  390.92000  16.4%  29.3   50s
 36291 10869  390.92000   60   29  467.50000  390.92000  16.4%  31.0   55s
 41602 10912  449.91317   58   31  467.50000  390.92000  16.4%  33.1   60s
 46372 10671  445.58478   63   52  467.50000  390.92000  16.4%  34.1   65s
 51346 10074  419.08300   78   88  467.50000  390.92000  16.4%  35.5   70s
 56904  8982  432.66086   75   52  467.50000  392.60970  16.0%  36.2   75s
 62261  8457  462.35688   74   22  467.50000  396.27000  15.2%  36.9   80s
 67951  9244  440.87500   82   24  467.50000  400.73389  14.3%  37.8   85s
 73612 10125  432.80880   87   30  467.50000  405.24770  13.3%  38.5   90s
 78570 10702  436.91667   71   34  467.50000  409.14521  12.5%  38.9   95s
 83264 11211  441.74286   78   46  467.50000  411.92317  11.9%  39.3  100s
 89038 11549     cutoff   79       467.50000  415.66487  11.1%  39.6  106s
 94208 11594 infeasible   72       467.50000  419.80773  10.2%  39.8  110s
 101083 11536  445.19000   68   47  467.50000  426.37273  8.80%  40.0  115s
 105620 11377  449.58743   72   42  467.50000  430.00000  8.02%  40.0  120s
 112421 11030  435.47836   77   64  467.50000  434.54567  7.05%  39.9  125s
 118998  9975  445.16025   78   78  467.50000  437.96680  6.32%  39.9  130s
 124662  9049 infeasible   69       467.50000  440.63200  5.75%  39.8  135s
 131491  7900  446.62418   62    7  467.50000  443.84000  5.06%  39.7  140s
 138405  6489     cutoff   64       467.50000  446.75259  4.44%  39.7  145s
 145326  4568  451.36125   51   65  467.50000  450.05000  3.73%  39.5  150s
 152602  1792     cutoff   78       467.50000  455.21467  2.63%  39.2  155s

Cutting planes:
  Learned: 62
  Gomory: 74
  Lift-and-project: 4
  Cover: 1
  Implied bound: 116
  Projected implied bound: 1
  Clique: 195
  MIR: 4
  StrongCG: 2
  Flow cover: 102
  Zero half: 88
  RLT: 119
  Relax-and-lift: 18
  BQP: 2

Explored 157189 nodes (6084699 simplex iterations) in 158.06 seconds (380.92 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: 467.5 467.5 470.97 ... 525.42

Optimal solution found (tolerance 1.00e-04)
Best objective 4.675000000000e+02, best bound 4.675000000000e+02, gap 0.0000%

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000
Seed  2

Optimize a model with 12500 rows, 8675 columns and 61725 nonzeros
Model fingerprint: 0x2e4cffc6
Variable types: 675 continuous, 8000 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 2e+02]
  Objective range  [2e+00, 8e+01]
  Bounds range     [1e+00, 2e+02]
  RHS range        [7e-15, 2e+02]
Presolve removed 7900 rows and 1350 columns
Presolve time: 0.08s
Presolved: 4600 rows, 7325 columns, 42850 nonzeros
Variable types: 600 continuous, 6725 integer (6725 binary)

Root relaxation: objective 3.328500e+02, 1538 iterations, 0.04 seconds (0.08 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0  332.85000    0   22          -  332.85000      -     -    0s
H    0     0                     836.4800000  332.85000  60.2%     -    0s
H    0     0                     722.4300000  332.85000  53.9%     -    0s
H    0     0                     652.2900000  332.85000  49.0%     -    0s
     0     0  332.85000    0   22  652.29000  332.85000  49.0%     -    0s
     0     0  332.85000    0   22  652.29000  332.85000  49.0%     -    0s
     0     0  332.85000    0   22  652.29000  332.85000  49.0%     -    0s
     0     0  332.85000    0   22  652.29000  332.85000  49.0%     -    0s
     0     0  332.85000    0   22  652.29000  332.85000  49.0%     -    0s
H    0     0                     589.5200000  332.85000  43.5%     -    0s
     0     0  332.85000    0   22  589.52000  332.85000  43.5%     -    0s
     0     0  332.85000    0   24  589.52000  332.85000  43.5%     -    0s
     0     0  334.39772    0   24  589.52000  334.39772  43.3%     -    0s
H    0     0                     585.1500000  337.49000  42.3%     -    0s
H    0     0                     584.7000000  337.49000  42.3%     -    0s
H    0     0                     579.2600000  337.49000  41.7%     -    0s
H    0     0                     574.3400000  337.49000  41.2%     -    0s
H    0     0                     567.9100000  337.49000  40.6%     -    0s
     0     2  337.49000    0   24  567.91000  337.49000  40.6%     -    0s
H  198   190                     565.3600000  341.23000  39.6%  52.6    0s
*  508   410              13     556.1600000  346.25509  37.7%  42.7    1s
*  649   467              21     531.1000000  348.76000  34.3%  41.2    1s
H  733   504                     522.0000000  353.22205  32.3%  39.6    1s
H  734   494                     518.2200000  353.22205  31.8%  39.7    1s
*  801   529              24     504.2100000  353.22205  29.9%  38.8    1s
H 1268   692                     491.7100000  360.94500  26.6%  36.2    1s
* 2127  1033              29     482.3200000  372.18307  22.8%  33.0    2s
H 2588  1112                     477.8800000  378.69000  20.8%  31.4    2s
H 2849  1127                     471.2800000  378.69000  19.6%  32.1    4s
H 2918  1075                     467.5000000  378.69000  19.0%  32.4    4s
  3234  1121  416.13055   29   24  467.50000  378.69000  19.0%  33.3    5s
  7503  1546 infeasible   30       467.50000  386.90381  17.2%  32.9   10s
 12700  2468  425.72253   32   34  467.50000  403.06000  13.8%  32.5   15s
 16694  2481 infeasible   50       467.50000  414.12847  11.4%  32.0   20s
 23441  2736  458.52566   57   26  467.50000  425.66000  8.95%  30.8   25s
 30049  2206  467.49000   54    6  467.50000  436.99000  6.53%  29.7   30s
 36181     0 infeasible   49       467.50000  455.13000  2.65%  28.1   35s

Cutting planes:
  Learned: 4
  Gomory: 4
  Implied bound: 12
  Clique: 19
  MIR: 3
  Zero half: 1
  RLT: 5

Explored 36946 nodes (1028251 simplex iterations) in 35.03 seconds (96.38 work units)
Thread count was 16 (of 16 available processors)

Solution count 10: 467.5 467.5 471.28 ... 531.1

Optimal solution found (tolerance 1.00e-04)
Best objective 4.675000000000e+02, best bound 4.675000000000e+02, gap 0.0000%

Model 3: Timeline

MILP Challenges and Remedies

Issue Relevant Parameters
Presolve too slow Presolve=0/1, limit PrePasses, Aggregate/AggFill
Relaxation too slow Method=0/1/2, NoRel heuristic, Parameters for presolve/simplex/barrier, DegenMoves
Root node too slow Cuts=0/1, limit CutPasses
Node relaxations slow NodeMethod=0/1/2, SimplexPricing
No (good) solution found MIPFocus=1, increase Heuristics, RINS, NoRel, provide start solution, BranchDir
Bound not improving MIFocus=2/3, Cuts=2/3, Presolve=2
Large Branch&Bound tree VarBranch, BranchDir

Automatic Parameter Tuning Tool

grbtune version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 22.04.5 LTS")
Copyright (c) 2025, Gurobi Optimization, LLC

Read MPS format model from file ../models/neos-3209519-ruhr.mps.bz2
Reading time = 1.13 seconds
3209519: 12500 rows, 8675 columns, 61725 nonzeros

Using Gurobi shared library /nfs/shared/static-builds/grbtune1203
Gurobi Compute Server Worker version 12.0.3 build v12.0.3rc0 (linux64 - "Ubuntu 20.04.6 LTS")

CPU model: Intel(R) Xeon(R) Platinum 8488C, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

Non-default parameters:
TimeLimit  1000
CSIdleTimeout  1800
TuneCriterion  0
TuneTrials  3
TuneMetric  0
GURO_PAR_TUNENUMPARAMSETS  1000
GURO_PAR_TUNEMAXNONDEFAULT  5

Start tuning.
Tune 33 parameters.

Solving model using baseline parameter set with TimeLimit=1000s

-------------------------------------------------------------------------------

Testing candidate parameter set 1...

    Default parameters

Solving 3209519 with random seed #1 ... runtime 11.24s
Solving 3209519 with random seed #2 ... runtime 158.06s
Solving 3209519 with random seed #3 ... runtime 35.03s

Summary candidate parameter set 1 
 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519      11.24s  158.06s   35.03s   68.11s    64.34  158.06s

-------------------------------------------------------------------------------
Begin tuning (baseline mean runtime 68.11s)...
-------------------------------------------------------------------------------

Testing candidate parameter set 2...

    VarBranch 0

Solving 3209519 with random seed #1 ... runtime 11.18s
Solving 3209519 with random seed #2 ... runtime 158.08s
Solving 3209519 with random seed #3 ... runtime 35.03s

Summary candidate parameter set 2 
 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519      11.18s  158.08s   35.03s   68.10s    64.37  158.08s

Progress so far:
  baseline: mean runtime 68.11s (parameter set 1, 0 non-defaults)
  best:     mean runtime 68.11s (parameter set 1, 0 non-defaults)
Total elapsed tuning time 409s (1 running jobs)

-------------------------------------------------------------------------------

Testing candidate parameter set 3...

    MIPFocus 3

Solving 3209519 with random seed #1 ... runtime 58.06s
Solving 3209519 with random seed #2 ... runtime 168.96s

Summary candidate parameter set 3 (discarded)
 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519      58.06s  168.96s        -        -        -        -

Progress so far:
  baseline: mean runtime 68.11s (parameter set 1, 0 non-defaults)
  best:     mean runtime 68.11s (parameter set 1, 0 non-defaults)
Total elapsed tuning time 636s (1 running jobs)

-------------------------------------------------------------------------------

Testing candidate parameter set 4...

    MIPFocus 2

Solving 3209519 with random seed #1 ... runtime 25.62s
Solving 3209519 with random seed #2 ... runtime 38.04s
Solving 3209519 with random seed #3 ... runtime 38.58s

Summary candidate parameter set 4 
 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519      25.62s   38.04s   38.58s   34.08s     5.99   38.58s

Improvement found:
  baseline: mean runtime 68.11s (parameter set 1, 0 non-defaults)
  improved: mean runtime 34.08s (parameter set 4, 1 non-defaults)
Total elapsed tuning time 738s (1 running jobs)

-------------------------------------------------------------------------------
...
-------------------------------------------------------------------------------
Tested 1000 parameter sets in 17864.00s
Total optimization run time for up to 1 concurrent runs: 17861.12s

Baseline parameter set: mean runtime 68.11s

    Default parameters

 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519      11.24s  158.06s   35.03s   68.11s    64.34  158.06s


Improved parameter set 1 (mean runtime 5.02s):

    Method 2
    BranchDir 1
    Cuts 0
    AggFill 1000
    Presolve 2

 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519       4.37s    5.63s    5.05s    5.02s     0.52    5.63s


Improved parameter set 2 (mean runtime 6.12s):

    Method 0
    Heuristics 0
    AggFill 1000
    PrePasses 1

 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519       4.67s    6.69s    7.00s    6.12s     1.04    7.00s


Improved parameter set 3 (mean runtime 6.57s):

    Heuristics 0
    AggFill 1000

 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519       6.08s    7.58s    6.06s    6.57s     0.71    7.58s


Improved parameter set 4 (mean runtime 14.35s):

    Heuristics 0

 # Name              0        1        2      Avg  Std Dev      Max
 0 3209519      19.25s    9.43s   14.37s   14.35s     4.01   19.25s

Tuning Challenge !!!


11 attendees submitted parameters!


Winners

  • Model 1: Diego Olivier Fernandez Pons, avg. runtime: 37 sec
    {‘MIPFocus’: 2, ‘ScaleFlag’: 3}
  • Model 2: Tim Varelmann, avg. runtime: 45 sec
    {‘MIPFocus’: 2, ‘Symmetry’: 2, ‘Cuts’: 3, ‘Heuristics’: 0}
  • Model 3: Faheem Zafari, avg. runtime: 6 sec
    {‘Method’: 0, ‘SimplexPricing’: 1, ‘BranchDir’: 1, ‘Heuristics’: 0, ‘VarBranch’: 0, ‘Cuts’: 1, ‘GomoryPasses’: 0, ‘PreSparsify’: 2}

Thank You


Send your models to the Gurobi Experts for tuning!